DOI QR코드

DOI QR Code

Identification of bacteria isolated from rockworm viscera and application of isolated bacteria to shrimp aquaculture wastewater treatment

  • Ja Young Cho (Department of Biotechnology, Pukyong National University) ;
  • Kyoung Sook Cho (Department of Biotechnology, Pukyong National University) ;
  • Chang Hoon Kim (Department of Marine Bio-materials and Aquaculture, Pukyong National University) ;
  • Joong Kyun Kim (Department of Biotechnology, Pukyong National University)
  • Received : 2023.05.19
  • Accepted : 2023.06.16
  • Published : 2023.06.30

Abstract

Large amounts of waste and wastewater from aquaculture have negatively impacted ecosystems. Among them, shrimp aquaculture wastewater contains large amounts of nitrogen contaminants derived from feed residues in an aerobic environment. This study isolated candidate strains from adult rockworms to treat shrimp aquaculture wastewater (SAW) in an aerobic environment. Among 87 strains isolated, 25 grew well at the same temperature as the shrimp aquaculture with excellent polymer degradation ability (>0.5 cm clear zone). Six isolates (strains AL1, AL4, AL5, AL6, LA10, and PR15) were finally selected after combining strains with excellent polymer degradation ability without antagonism. 16S rRNA sequencing analysis revealed that strains AL1, AL4, AL5, AL6, LA10, and PR15 were closely related to Bacillus paramycoides, Bacillus pumilus, Stenotrophomonas rhizophila, Bacillus paranthracis, Bacillus paranthracis, and Micrococcus luteus, respectively. When these six isolates were applied to SAW, they reached a maximum cell viability of 2.06×105 CFU mL-1. Their chemical oxygen demand (CODCr) and total nitrogen(TN) removal rates for 12h were 51.0% and 44.6%, respectively, when the CODCr/TN ratio was approximately 10.0. Considering these removal rates achieved in this study under batch conditions, these six isolates could be used for aerobic denitrification. Consequently, these six isolates from rockworms are good candidates that can be applied to the field of aquaculture wastewater treatment.

Keywords

Acknowledgement

This work was supported by a Research Grant of Pukyong National University (2021).

References

  1. Anh PT, C Kroeze, SR Bush and APJ Mol. 2010. Water pollution by intensive brackish shrimp farming in south-east Vietnam: Causes and options for control. Agric. Water Manage. 97:872-882. https://doi.org/10.1016/j.agwat.2010.01.018
  2. Avnimelech Y. 2009. Biofloc Technology: A Practical Guide Book. World Aquaculture Society. Louisiana, US.
  3. Bakar NSA, NM Nasir, F Lananan, SHA Hamid, SS Lam and A Jusoh. 2015. Optimization of C/N ratios for nutrient removal in aquaculture system culturing African catfish, (Clarias gariepinus) utilizing Bioflocs Technology. Int. Biodeterior. Biodegrad. 102:100-106. https://doi.org/10.1016/j.ibiod.2015.04.001
  4. Boopathy R, C Bonvillain, Q Fontenot and M Kilgen. 2007. Biological treatment of low-salinity shrimp aquaculture wastewater using sequencing batch reactor. Int. Biodeterior. Biodegrad. 59:16-19. https://doi.org/10.1016/j.ibiod.2006.05.003
  5. Borah SN, L Goswami, S Sen, D Sachan, H Sarma, M Montes, JR Peralta-Videa, K Pakshirajan and M Narayan. 2021. Selenite bioreduction and biosynthesis of selenium nanoparticles by Bacillus paramycoides SP3 isolated from coal mine overburden leachate. Environ. Pollut. 117519:1-12. https://doi.org/10.1016/j.envpol.2021.117519
  6. Brown N, S Eddy and S Plaud. 2011. Utilization of waste from a marine recirculating fish culture system as a feed source for the polychaete worm, Nereis virens. Aquaculture 322:177-183. https://doi.org/10.1016/j.aquaculture.2011.09.017
  7. Chevakidagarn P, O Wanaglad and S Chiayvareesajja. 2012. Optimum Carbon/Nitrogen Ratio for upgrading single-stage activated sludge process in the Frozen Seafood Industry. Sci. Technol. Asia 17:11-21.
  8. Chopra S and D Kumar. 2020. Characterization, optimization and kinetic study of diclofenac degradation by novel bacterial strains and their synthetic consortia. Bioremediat. J. 24:150-170. https://doi.org/10.1080/10889868.2020.1793723
  9. Dale H, M Solan, P Lam and M Cunliffe. 2019. Sediment microbial assemblage structure is modified by marine polychaete gut passage. FEMS Microbiol. Ecol. 95:fiz047. https://doi.org/10.1093/femsec/fiz047
  10. Diana JS. 2012. Is lower intensity aquaculture a valuable means of producing food? An evaluation of its effects on near-shore and inland waters. Rev. Aquac. 4:234-245. https://doi.org/10.1111/j.1753-5131.2012.01079.x
  11. Fontenot Q, C Bonvillain, M Kilgen and R Boopathy. 2007. Effects of temperature, salinity, and carbon: nitrogen ratio on sequencing batch reactor treating shrimp aquaculture wastewater. Bioresour. Technol. 98:1700-1703. https://doi.org/10.1016/j.biortech.2006.07.031
  12. Fuirst M, CS Ward, C Schwaner, Z Diana, TF Schultz and D Rittschof. 2021. Compositional and functional microbiome variation between tubes of an intertidal polychaete and surrounding marine sediment. Front. Mar. Sci. 8:656506. https://doi.org/10.3389/fmars.2021.656506
  13. Gao M, F Liang, A Yu, B Li and L Yang. 2010. Evaluation of stability and maturity during forced-aeration composting of chicken manure and sawdust at different C/N ratios. Chemosphere 78:614-619. https://doi.org/10.1016/j.chemosphere.2009.10.056
  14. Giangrande A, M Licciano and L Musco. 2005. Polychaetes as environmental indicators revisited. Mar. Pollut. Bull. 50:1153-1162. https://doi.org/10.1016/j.marpolbul.2005.08.003
  15. Hochstein R, Q Zhang, MJ Sadowsky and VE Forbes. 2019. The deposit feeder Capitella teleta has a unique and relatively complex microbiome likely supporting its ability to degrade pollutants. Sci. Total Environ. 670:547-554. https://doi.org/10.1016/j.scitotenv.2019.03.255
  16. Iber BT and NA Kasan. 2021. Recent advances in Shrimp aquaculture wastewater management. Heliyon 7:e08283. https://doi.org/10.1016/j.heliyon.2021.e08283
  17. Jankowska E, J Chwialkowska, M Stodolny and P Oleskowicz-Popiel. 2015. Effect of pH and retention time on volatile fatty acids production during mixed culture fermentation. Bioresour. Technol. 190:274-280. https://doi.org/10.1016/j.biortech.2015.04.096
  18. Kanjilal T, C Bhattacharjee and S Datta. 2015. Bio-degradation of acetamiprid from wetland wastewater using indigenous Micrococcus luteus strain SC 1204: Optimization, evaluation of kinetic parameter and toxicity. J. Water Process. Eng. 6:21-31. https://doi.org/10.1016/j.jwpe.2015.03.002
  19. Kapoor M, LM Nair and RC Kuhad. 2008. Cost-effective xylanase production from free and immobilized Bacillus pumilus strain MK001 and its application in saccharification of Prosopis juliflora. Biochem. Eng. J. 38:88-97. https://doi.org/10.1016/j.bej.2007.06.009
  20. Kim SK, JW Jang, YR Jo, JH Kim and SK Kim. 2019. Influence of denitrified biofloc water on the survival rate and physiological characteristics of Pacific white shrimp juveniles, Litopenaeus vannamei. Korean J. Environ. Biol. 37:136-143. https://doi.org/10.11626/KJEB.2019.37.2.136
  21. Kinoshita K, S Tamaki, M Yoshioka, S Srithonguthai, T Kunihiro, D Hama, K Ohwada and H Tsutsumi. 2008. Bioremediation of organically enriched sediment deposited below fish farms with artificially mass-cultured colonies of a deposit-feeding polychaete Capitella sp. I. Fish. Sci. 74:77-87. https://doi.org/10.1111/j.1444-2906.2007.01498.x
  22. Kobayashi M, S Msangi, M Batka, S Vannuccini, MM Dey and JL Anderson. 2015. Fish to 2030: the role and opportunity for aquaculture. Aquac. Econ. Manag. 19:282-300. https://doi.org/10.1080/13657305.2015.994240
  23. Lv P, J Luo, X Zhuang, D Zhang, Z Huang and Z Bai. 2017. Diversity of culturable aerobic denitrifying bacteria in the sediment, water and biofilms in Liangshui River of Beijing, China. Sci. Rep. 7:10032. https://doi.org/10.1038/s41598-017-09556-9
  24. McFall-Ngai M, MG Hadfield, TC Bosch, HV Carey, T Domazet-Loso, AE Douglas, N Dubilier, G Eberl, T Fukami, SF Gilbert, U Hentschel, N King, S Kjelleberg, AH Knoll, N Kremer, SK Mazmanian, JL Metcalf, K Nealson, NE Pierce, JF Rawls, A Reid, EG Ruby, M Rumpho, JG Sanders, D Tautz and JJ Wernegreen. 2013. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. U.S.A. 110:3229-3236. https://doi.org/10.1073/pnas.1218525110
  25. Ngo HH, W Guo, T Tram Vo, LD Nghiem and FI Hai. 2016. Aerobic treatment of effluents from the aquaculture industry. pp. 35-77. In: Current Developments in Biotechnology and Bioengineering: Biological Treatment of Industrial Effluents (Lee D, V Jegatheesan, HH Ngo, PC Hallenbeck and A Pandey, eds.). Elsevier. Amsterdam, Netherlands.
  26. Nguyen TNP, SJ Chao, PC Chen and C Huang. 2018. Effects of C/N ratio on nitrate removal and floc morphology of autohydrogenotrophic bacteria in a nitrate-containing wastewater treatment process. J. Environ. Sci. 69:52-60. https://doi.org/10.1016/j.jes.2017.04.002
  27. Onozato M, T Sugawara, A Nishigaki and S Ohshima. 2012. Study on the degradation of polycyclic aromatic hydrocarbons (PAHs) in the excrement of Marphysa sanguinea. Polycycl. Aromat. Compd. 32:238-247. https://doi.org/10.1080/10406638.2012.659831
  28. Pant G, A Prakash, JVP Pavani, S Bera, GVNS Deviram, A Kumar, M Panchpuri and RG Prasuna. 2015. Production, optimization and partial purification of protease from Bacillus subtilis. J. Taibah Univ. Sci. 9:50-55. https://doi.org/10.1016/j.jtusci.2014.04.010
  29. Rashid A, SA Mirza, C Keating, S Ali and LC Campos. 2022. Indigenous Bacillus paramycoides spp. and Alcaligenes faecalis: sustainable solution for bioremediation of hospital wastewater. Environ. Technol. 43:1903-1916. https://doi.org/10.1080/09593330.2020.1858180
  30. Ren J, C Wang, C Li, B Fan and D Niu. 2020. Biodegradation of acephate by Bacillus paramycoides NDZ and its degradation pathway. World J. Microbiol. Biotechnol. 36:1-11. https://doi.org/10.1007/s11274-020-02931-1
  31. Robinson G, GS Caldwell, CJW Jones, MJ Slater and SM Stead. 2015. Redox stratification drives enhanced growth in a deposit -feeding invertebrate: implications for aquaculture bioremediation. Aquac. Environ. Interact. 8:1-13. https://doi.org/10.3354/aei00158
  32. Rouse GW, SK Goffredi and RC Vrijenhoek. 2004. Osedax: bone-eating marine worms with dwarf males. Science 305:668-671. https://doi.org/10.1126/science.1098650
  33. Roy D, K Hassan and R Boopathy. 2010. Effect of carbon to nitrogen (C: N) ratio on nitrogen removal from shrimp production waste water using sequencing batch reactor. J. Ind. Microbiol. Biotechnol. 37:1105-1110. https://doi.org/10.1007/s10295-010-0869-4
  34. Ryan R, S Monchy, M Cardinale, S Taghavi, L Crossman, M Avison, G Berg, D Lelie and J Dow. 2009. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat. Rev. Microbiol. 7:514-525. https://doi.org/10.1038/nrmicro2163
  35. Schwartz MF and CE Boyd. 1994. Effluent quality during harvest of channel catfish from watershed ponds. Prog. Fish-Cult. 56:25-32. https://doi.org/10.1577/1548-8640(1994)056<0025:EQDHOC>2.3.CO;2
  36. Shin-ya Y and T Kajiuchi. 2002. Enzymatic activity of PEOMA-modified lysozyme obtained from degradation of Micrococcus luteus cell and N-acetylated chitosan. Biochem. Eng. J. 11:73-75. https://doi.org/10.1016/S1369-703X(02)00013-X
  37. Shin S, K Yundendorj, SS Lee, DH Lee, KH Kang and HY Kahng. 2013. Characterization and organic hydrocarbons degradation potential of euryhaline marine microorganism, Bacillus sp. EBW4 isolated from polychaete (Perinereis aibuhitensis). Korean J. Microbiol. 49:38-45. https://doi.org/10.7845/kjm.2013.005
  38. Song ZF, J An, GH Fu and XL Yang. 2011. Isolation and characterization of an aerobic denitrifying Bacillus sp. YX-6 from shrimp culture ponds. Aquaculture 319:188-193. https://doi.org/10.1016/j.aquaculture.2011.06.018
  39. Sun Z, Y Lv, Y Liu and R Ren. 2016. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel metal resistant bacterium Cupriavidus sp. S1. Bioresour. Technol. 220:142-150. https://doi.org/10.1016/j.biortech.2016.07.110
  40. Sunny N and L Mathai. 2015. Physicochemical process for fish processing wastewater. pp. 113-122. In: Efficient Management of Wastewater from Manufacturing: New Treatment Technologies (Monsalvo VM, ed.). Apple Academic Press. New York.
  41. Surendra SV, BL Mahalingam and M Velan. 2017. Degradation of monoaromatics by Bacillus pumilus MVSV3. Braz. Arch. Biol. Technol. 60:1-18. https://doi.org/10.1590/1678-4324-2017160319
  42. Thy HTT, NN Tri, OM Quy, R Fotedar, K Kannika, S Unajak and N Areechon. 2017. Effects of the dietary supplementation of mixed probiotic spores of Bacillus amyloliquefaciens 54A, and Bacillus pumilus 47B on growth, innate immunity and stress responses of striped catfish (Pangasianodon hypophthalmus). Fish Shellfish Immunol. 60:391-399. https://doi.org/10.1016/j.fsi.2016.11.016
  43. Tomassetti P and S Porrello. 2005. Polychaetes as indicators of marine fish farm organic enrichment. Aquac. Int. 13:109-128. https://doi.org/10.1007/s10499-004-9026-2
  44. Tuleva B, N Christova, R Cohen, D Antonova, T Todorov and I Stoineva. 2009. Isolation and characterization of trehalose tetraester biosurfactants from a soil strain Micrococcus luteus BN56. Process Biochem. 44:135-141. https://doi.org/10.1016/j.procbio.2008.09.016
  45. Vinothkumar R, JY Dar, VS Bharti, A Singh, A Vennila, IA Bhat and PK Pandey. 2021. Heterotrophic nitrifying and aerobic denitrifying bacteria: Characterization and comparison of shrimp pond and effluent discharge channel in aspects of composition and function. Aquaculture 539:736659. https://doi.org/10.1016/j.aquaculture.2021.736659
  46. Wang M, H Zhang and G Li. 2020. Biodegradation of fluoranthene contaminated soil by different combinations of bacteria. pp. 1-4. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing. Bristol, UK. https://doi.org/10.1088/1755-1315/526/1/012014
  47. World Bank. 2014. Fish to 2030: Prospects for Fisheries and Aquaculture(World Bank Report Number 83177-GLB). World Bank. Washington D.C.
  48. Wyban J, WA Walsh and DM Godin. 1995. Temperature effects on growth, feeding rate and feed conversion of the Pacific white shrimp (Penaeus vannamei). Aquaculture 138:267-279. https://doi.org/10.1016/0044-8486(95)00032-1
  49. Yang T, Y Xin, L Zhang, Z Gu, Y Li, Z Ding and G Shi. 2020. Characterization on the aerobic denitrification process of Bacillus strains. Biomass Bioenergy 140:105677. https://doi.org/10.1016/j.biombioe.2020.105677
  50. Zheng C, B Qu, J Wang, J Zhou and H Lu. 2009. Isolation and characterization of a novel nitrobenzene-degrading bacterium with high salinity tolerance: Micrococcus luteus. J. Hazard. Mater. 165:1152-1158. https://doi.org/10.1016/j.jhazmat.2008.10.119