DOI QR코드

DOI QR Code

Analysis of surface emission and oxidation rate of landfill gas by major discharge path of landfill

매립장 주요 배출경로별 매립가스 표면발산량 및 산화율 분석

  • Seung-Kyu Chun (Graduate School of Convergence Sciences, Seoul National University of Science & Technology) ;
  • Jong-Keun Park (Graduate School of Convergence Sciences, Seoul National University of Science & Technology) ;
  • Myoung-Gwan Kim (Graduate School of Convergence Sciences, Seoul National University of Science & Technology)
  • 천승규 (서울과학기술대학교 융합과학대학원) ;
  • 박종근 (서울과학기술대학교 융합과학대학원) ;
  • 김명관 (서울과학기술대학교 융합과학대학원)
  • Received : 2023.04.10
  • Accepted : 2023.06.26
  • Published : 2023.06.30

Abstract

An analysis was conducted on landfill gas generation and surface emission by major routes for three landfill sites of S Landfill in the metropolitan area. LS1, which had a total landfill gas generation ratio of 10.9%, accounted for 49.4% of the total surface emissions. The total surface emission of methane alone was 13.6 Nm3/min in the three landfill sites. Among them, the surface emission of methane at LS1, LS2, and LS3 was 8.4(61.7%), 4.0(29.4%), and 1.2 Nm3/min(8.9%), respectively. By emission path in the upper, slope, and dike, it was 7.3(53.2%), 6.4(46.7%), and 0.02 Nm3/min(0.1%). The dike section of the major surface emission areas showed the largest oxidation rate at 87.5%, followed by the upper at 72.3%, and the slope at 71.8%. Based on methane generation, LS1 had the largest surface emission contribution rate, with 61.7% of the total by S Landfill. By major emission path, the slope section of LS1 accounted for 41.7% of the total, the upper section of LS2 24.4%, and the upper section of LS1 20.0%, which accounted for 86.1% of the total methane surface emission of S Landfill. Therefore, it is concluded that intensive management will be necessary.

수도권에 위치한 S매립장 내 3개의 매립장을 대상으로 매립가스 배출 및 주요 경로별 표면발산과 관련된 분석을 하였다. 전체 매립가스 발생비율 10.9%인 LS1이 총 표면발산 비중은 49.4%를 차지하고 있었다. 3개 매립장에서의 메탄의 총 표면발산은 13.6 Nm3/min로서, LS1 8.4 Nm3/min (61.7%), LS2 4.0 Nm3/min(29.4%), LS3 1.2 Nm3/min(8.9%)이고, 발산경로별로는 상부 7.3 Nm3/min (53.2%), 사면 6.4 Nm3/min(46.7%), 다이크 0.02 Nm3/min(0.1%)이었다. 3개 매립장의 주요 배출경로별 산화율은 다이크가 87.5%로 가장 크고, 상부 72.3%, 사면 71.8% 순이었다. 메탄을 기준으로 표면발산 기여율은 매립장 별로 LS1이 전체의 61.7%로 가장 컸다. 주요 배출경로별로는 LS1의 사면이 전체의 41.7%, LS2의 상부 24.4%, LS1의 상부 20.0%로서 S매립장의 전체 메탄 표면발산량의 86.1%를 차지함에 따라 향후 집중적인 관리가 필요할 것으로 판단되었다.

Keywords

References

  1. D. Gewald, K. Siokos, S. Karellas, H. Spliethoff, "Waste heat recovery from a landfill gas-fired power plant", Renew. Sustain. Energy Rev., Vol.16, No.4 pp. 1779-1789, (2012). https://doi.org/10.1016/j.rser.2012.01.036
  2. S. Rasi, J. Lantela, J. Rintala, "Upgrading landfill gas using a high pressure water absorption process", Fuel, Vol.115, pp. 539-543, (2014). https://doi.org/10.1016/j.fuel.2013.07.082
  3. L. Yang, X. Ge, C. Wan, F. Yu, Y. Li, "Progress and perspectives in converting biogas to transportation fuels", Renew. Sustain. Energy Rev., Vol.40, pp. 1133-1152, (2014). https://doi.org/10.1016/j.rser.2014.08.008
  4. Q. T. Zheng, R. Kerry Rowe, S. J. Feng, "Design of vertical landfill gas collection wells considering non-homogeneity with depth", Waste Manag., Vol.82, pp. 26-36, (2018). https://doi.org/10.1016/j.wasman.2018.10.012
  5. J. Monster, P. Kjeldsen, C. Scheutz., "Methodologies for measuring fugitive methane emissions from landfills - A review", Waste Manag., Vol.87, pp. 835-859, (2019). https://doi.org/10.1016/j.wasman.2018.12.047
  6. D. Di Trapani, G. Di Bella, G. Viviani, "Uncontrolled methane emissions from a MSW landfill surface: Influence of landfill features and side slopes", Waste Manag., Vol.33, No.10 pp. 2108-2115, (2013). https://doi.org/10.1016/j.wasman.2013.01.032
  7. D. Huang, Y. Du, Q. Xu, J. H. Ko, "Quantification and control of gaseous emissions from solid waste landfill surfaces", J. Environ. Manag., Vol.302, Part A 114001, (2022).
  8. H. Zhang, P. He, L. Shao, "Methane emissions from MSW landfill with sandy soil covers under leachate recirculation and subsurface irrigation", Atmospheric Environ., Vol.42, No.22 pp. 5579-5588, (2008). https://doi.org/10.1016/j.atmosenv.2008.03.010
  9. COUNCIL DIRECTIVE 1999/31/EC of 26 April 1999 on the landfill of waste.
  10. S. K. Chun, "Conformity Enhancement of Methane Generation Model for In-Service Landfill site", J. of Korean Oil Chemists' Soc., Vol.33, No.1 pp. 213-223, (2016). https://doi.org/10.12925/jkocs.2016.33.1.213
  11. B. Sizirici, B. Tansel, V. Kumar, "Knowledge based ranking algorithm for comparative assessment of post-closure care needs of closed landfills", Waste Manag., Vol.31, No.6 pp. 1232-1238, (2011). https://doi.org/10.1016/j.wasman.2011.01.014
  12. D. Laner, M. Crest, H. Scharff, J. W. F. Morris, M. A. Barlaz, "A review of approaches for the long-term management of municipal solid waste landfills", Waste Manag., Vol.32, No.3 pp. 498-512, (2012). https://doi.org/10.1016/j.wasman.2011.11.010
  13. SLC (Sudokwon Landfill Site Management Corp.), Sudokwon Landfilll Statistics Yearbook, pp. 93-101, (2018).
  14. US EPA., Measurement of Gaseous Emission Rates from Land Surfaces Using an Emission Isolation Flux Chamber User's Guide. pp. 3-11, (1986).
  15. F. Lucernoni, M. Rizzotto, F. Tapparo, L. Capelli, S. Sironi, V. Busini, "Use of CFD for static sampling hood design, An example for methane flux assessment on landfill surfaces", Chemosphere, Vol.163, pp. 259-269, (2016). https://doi.org/10.1016/j.chemosphere.2016.07.092
  16. S. J. Jeong, J. Y. Park, Y. M. Kim, M. H. Park, J. Y. Kim, "Innovation of flux chamber network design for surface methane emission from landfills using spatial interpolation models", Sci. Total Environ., Vol.688, pp. 18-25, (2019). https://doi.org/10.1016/j.scitotenv.2019.06.142
  17. C. Maurice, A. Lagerkvist, "LFG emission measurements in cold climatic conditions: seasonal variations and methane emissions mitigation", Cold Regions Sci. Technol., Vol.36, No.(1-3) pp. 37-46, (2003). https://doi.org/10.1016/S0165-232X(02)00094-0
  18. N. Yang, H. Zhang, L. M. Shao, F. Lu, P. J. He, "Greenhouse gas emissions during MSW landfilling in China: Influence of waste characteristics and LFG treatment measures", J. Environ. Manag., Vol.129, pp. 510-521, (2013). https://doi.org/10.1016/j.jenvman.2013.08.039
  19. J. H. Lee, W. J. Hwang, J. K. Kim, "Current Situation on Biogas as a fuel for Vehicles", J. of Korean Oil Chemists' Soc., Vol.30, No.4 pp. 740-753, (2013). https://doi.org/10.12925/jkocs.2013.30.4.740
  20. Q. Wang, X. Gu, S. Tang, A. Mohammad, D. N. Singh, H. Xie, Y. Chen, X. Zuo, Z. Sun, "Gas transport in landfill cover system: A critical appraisal", J. Environ. Manag., Vol.321, 116020, (2022).
  21. B. Nelson, R. G. Zytner, Y. Dulac, A. R. Cabral, "Mitigating fugitive methane emissions from closed landfills: A pilot-scale field study", Sci. Total Environ., Vol.851, Part 2 158351, (2022).