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Abstract  The gut microbiome is critical in human health, and various dietary factors 
influence its composition and function. Among these factors, animal products, such as 
meat, dairy, and eggs, represent crucial sources of essential nutrients for the gut 
microbiome. However, the correlation and characteristics of livestock consumption with 
the gut microbiome remain poorly understood. This review aimed to delineate the distinct 
effects of meat, dairy, and egg products on gut microbiome composition and function. 
Based on the previous reports, the impact of red meat, white meat, and processed meat 
consumption on the gut microbiome differs from that of milk, yogurt, cheese, or egg 
products. In particular, we have focused on animal-originated proteins, a significant 
nutrient in each livestock product, and revealed that the major proteins in each food elicit 
diverse effects on the gut microbiome. Collectively, this review highlights the need for 
further insights into the interactions and mechanisms underlying the impact of animal 
products on the gut microbiome. A deeper understanding of these interactions would be 
beneficial in elucidating the development of dietary interventions to prevent and treat 
diseases linked to the gut microbiome. 
  
Keywords  animal products, gut microbiome, meat, dairy products, egg products 

Introduction 

The gut microbiome is a complex ecosystem comprising trillions of microorganisms 

that play a crucial role in human and animal health (Bäckhed et al., 2012; Lee et al., 

2022; Oh et al., 2021). Diet is a modulator of the gut microbiome, and animal products 

cause changes in gut microbiome composition and function. 

Animal products, such as meat, dairy, and eggs, are excellent sources of protein, 

vitamins, and minerals, all of which are essential or beneficial for human health (Hess 

et al., 2016; Puglisi and Fernandez, 2022; Udenigwe and Aluko, 2012; Wyness, 2016).  
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Animal products contain higher essential amino acid levels than plant proteins (Day et al., 2022). These essential amino acids 

are derived from animal products and can be metabolized by gut bacteria to produce branched-chain amino acids that are 

important for the risk of type 2 diabetes (Gojda and Cahova, 2021; Madsen et al., 2017). Menaquinone (MK) is known to 

help stop and reverse bone loss and is contained mainly in the form of MK-4 in meat, eggs, and dairy products (Walther et al., 

2013). 

Meat is a prominent source of high-quality protein and essential nutrients such as iron, zinc, and vitamin B12 (Ahmad et 

al., 2018). Some studies have demonstrated that moderate meat consumption and its proteins compensate for iron deficiency 

and positively affect the gut microbiome, such as a high abundance of Lactobacillus (Krebs et al., 2013; Zhu et al., 2015). 

Dairy products refer to foods made from the milk of mammals, such as cows, goats, and sheep, and can include milk, 

cheese, yogurt, butter, and cream. Dairy products have long been recognized as essential for a healthy and balanced diet 

because they are high in casein, calcium, and vitamins (Ortega et al., 2019). Nowadays, research has been conducted on the 

addition of other substances, such as feeding probiotic culture fluids to cows or adding flaxseed to their feed, to improve milk 

yield or quality (Ababakri et al., 2021; Lim et al., 2021). Consumption of dairy products reduces cardiometabolic risk factors 

in diet-induced obese mice (Perazza et al., 2020). These dairy products, such as milk, cheese, yogurt, and kefir, contain 

probiotics that can improve gut health by increasing the abundance of beneficial bacteria such as Bifidobacterium 

pseudolongum and Lactococcus lactis (Aslam et al., 2020; Farag et al., 2020; Zhao et al., 2019a).  

Eggs and egg products are nutrient-dense food containing various proteins, essential amino acids, vitamins, and minerals, 

such as vitamin D, vitamin B12, choline, and selenium. These nutrients play an important role in supporting homeostasis in 

the body, such as brain and nervous system function, metabolism, and immune function (Eckert et al., 2013). In addition, 

eggs and egg products contain nutrients and bioactive compounds, such as vitamin D and phospholipids, which improve gut 

health by reducing inflammation (Puglisi and Fernandez, 2022). 

Moreover, eggs and egg products have been shown to increase gut microbial metabolites that help maintain a healthy gut 

lining, such as butyrate and propionic acid. The high protein content in eggs provides a source of essential amino acids for the 

growth and maintenance of beneficial bacteria in the gut (Ge et al., 2021; Liu et al., 2022a). 

Notably, the effects of animal products on the gut microbiome are complex and may depend on the type of animal product 

and the individual’s gut microbiome composition. However, studies summarizing the effects of animal products and proteins 

on the gut microbiome are limited. In this review, we discussed the effects of meat, dairy, and eggs, which are major animal 

products, and their processed products on gut microbiome composition and function. Furthermore, the effect of proteins, a 

major nutritional component of animal products, on the gut microbiome was summarized. Human studies were mainly 

summarized in this review, and the parts lacking in human studies were reviewed based on animal studies. 

 

Effects of Meat Products and Meat Protein on the Gut Microbiota 

Meat products 
The gut microbiome is significantly influenced by diet. In particular, meat product consumption affected gut microbiota 

composition (Table 1). Animal-based diets affect gut microbiota differently than plant-based diets (Muegge et al., 2011; 

Walker et al., 2011; Wu et al., 2011). Depending on the type of diet, the gut microbiota can change even in a short time, such 

as 3 days. There was no change in alpha-diversity for either animal- or plant-based diet, but the animal-based diet 

significantly improved beta-diversity (David et al., 2014). Another study found no significant differences in either the alpha-  
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Table 1. Human and animal studies assessing the effect of meat product consumption on the composition of gut microbiota

Citation Study design Intervention Trial 
duration

Participants Effect on the gut microbiota 

Kohnert et 
al.  
(2021) 

Randomized, 
controlled trial 

Meat-rich diet; >150 g of meat/d
Strict vegan diet 

4 wk 53 Healthy 
adults 

18–60 yr 

In meat-rich group 
 

No change in alpha- or beta-diversity 
 

Coprococcus ↓ 
Roseburia ↑ 

Faecalibacterium ↑ 
Blautia ↑ 

Russell et al. 
(2011) 

Randomized, 
crossover trial 

Maintenance diet (M); 13% 
protein and 50% carbohydrates

High-protein and moderate-
carbohydrate diet (HPMC); 28% 

protein and 35% carbohydrate 
High-protein and low-

carbohydrate (HPLC); 29% 
protein and 5% carbohydrate 

4 wk 17 Healthy 
males 

21–74 yr 
Body mass 

index (BMI) 
27.88–48.48

In HPLC group 
 

Roseburia/Eubacterium rectale ↓ 
Bacteroides spp. ↓ 

Foerster et 
al.  
(2014) 

Randomized, 
crossover trial 

Low-meat high-fiber period; 
whole grain products,  

40 g of fiber/d 
High-meat low-fiber period; 

200 g of red meat/d 

3 wk 20 Healthy 
adults 

20–60 yr 

In high-meat low-fiber period 
Clostridium sp. ↓ 

Hentges et 
al. (1977) 

Crossover trial High-beef diet; 380 g of beef/d
Meatless diet; 360 g milk; 150 g 

egg; 145 g cheese; 100 g peas 

4 wk 10 Healthy 
males 

In high-beef diet 
 

Genus 
Bacteroides ↑ 

 
Species 

Bacteroides fragilis ↑ 
Bifidobacterium adolescentis ↓ 

Zhao et al. 
(2019b) 

Crossover, 
controlled trial 

Beef-based diet 
Chicken-based diet 

2 wk 45 Healthy 
males 

18–27 yr 

In beef-based diet 
 

Lachnospira ↓ 
Lachnospiraceae NK4A136 group ↓

Ruminococcus 2 ↓ 

Dhakal et al. 
(2022) 

Randomized, 
crossover, 

controlled trial 

Pork group; 156 g pork/d 
Chicken group; 156 g chicken/d

10 d 50 Healthy 
older adults

66.44±7.44 yr
BMI 

29.8±5.59 

In both groups 
 

No change in alpha- or beta-diversity 
 

Phylum 
Bacteriodetes ↓ 

 
Family 

Bacteriodaceae ↓ 
Christencellaceae ↑ 

 
In pork group 

 
Ruminiclostridium 5 ↑ 

 
In chicken group 

 
Roseburia ↓ 
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Table 1. Human and animal studies assessing the effect of meat product consumption on the composition of gut microbiota (continued)

Citation Study design Intervention Trial 
duration

Participants Effect on the gut microbiota 

Shi et al. 
(2021) 

Cross-sectional 
study 

Not applicable (NA) NA 40 Healthy 
males 

18–30 yr; 
chicken-eaters 

(n=20) and 
pork-eaters 

(n=20) 

In pork-eater group 
 

Chao and Shannon index ↓ 
 

Phylum 
Firmicutes ↑ 

Bacteroidetes ↓ 
 

Genus 
Clostridiales, Bacteroides, 

Firmicutes, Lachnospiraceae, 
Faecalibacterium, Roseburia, 
Ruminococcus 2, and Blautia ↑ 

 
In chicken-eater group 

 
Phylum 

Firmicutes ↓ 
Bacteroidetes ↑ 

 
Genus 

Prevotellaceae, Prevotella 9, 
Bacteroidales, Dialister, Prevotella 2, 

Ruminococcaceae UCG 002, 
Lactobacillus, and Olsenella ↑ 

Sinha et al. 
(2021) 

Dietary intervention 
(participants were 
blinded to which 
group they were 

assigned) 

First phase (2 wk): conventional 
processed meats (Diet A) 

 
Second phase (2 wk): poultry (i.e., 

chicken and turkey) (Diet B) 
 

Third phase (2 wk):  
Group 1) conventional processed 
meat supplemented with natural 

phytochemical compounds  
(Diet C) 

 
Group 2) low-nitrite processed 

meat supplemented with 
phytochemical compounds  

(Diet D) 
 

Final phase (1 wk): nitrate-
enriched water with diet A, B, C, 

or D 

7 wk 63 Healthy 
volunteers 

(participants 
of each sex 

were 
randomly 

assigned to 
one of the two 
experimental 

groups) 
(ages 18–70, 

in good health, 
with a BMI 
between 18 

and 25 kg/m2)

NA 

Gao et al. 
(2021) 

Randomized 
controlled-feeding 

trial 

Control group: restricted from 
fried meat intake (n=58) 

 
Fried meat group: fried meat four 

times per week (n=59) 

4 wk 117 
Participants, 

(18–35 yr old, 
BMI>24 

kg/m2, and 
consumption 
of fried food 

more than one 
time per wk)

Family  
Lachnospiraceae ↓ 

 
Genus 

Flavonifractor ↓ 
Dialister ↑ 
Dorea ↑ 

Veillonella ↑ 
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Table 1. Human and animal studies assessing the effect of meat product consumption on the composition of gut microbiota (continued)

Citation Control treatment Experimental treatment Feeding 
duration

Animal  
model 

Effect on the gut microbiota 

Thøgersen  
et al. (2018) 

Chow,  
 

Conventional 
frankfurter sausage

Inulin-enriched frankfurter 
sausage 

4 wk 30 Healthy 
Sprague-

Dawley rats

Phylum 
Actinobacteria ↑ 

 
Family 

unclassified Lachnospiraceae ↑ 
Erysipelotrichaceae ↑ 

 
Genus 

Bifidobacterium ↑ 
 

Species 
Bacteroides uniformis ↑ 

Thøgersen  
et al. (2020) 

Control sausage Sausage+inulin and calcium 
Sausage+inulin 

Sausage+calcium 

4 wk 48 Healthy 
Sprague-

Dawley rats

Phylum  
Firmicutes ↑ (Sausage+calcium, 

Sausage+inulin and calcium) 
Bacteroidetes ↓ (Sausage+calcium, 

Sausage+inulin and calcium) 
Proteobacteria, Cyanobacteria ↓ 

(Sausage+inulin and calcium) 
Deferribacteres ↑ (Sausage+calcium)
Actinobacteria ↑ (Sausage+inulin and 

calcium) 
 

Genus 
Muribaculaceae, uncultivated 

Ruminococcaceae ↑ (Sausage+Inulin)
Clostridium 6, Staphylococcus, 
uncultivated Ruminococcaceae 

(PAC000661) ↑ (Sausage+calcium)
uncultivated genus (PAC002482), 

Parabacteroides, Alistipes, 
Clostridium, unclassified 
Peptostreptococcaceae ↓ 

(Sausage+calcium) 
 

Bifidobacterium, Staphylococcus, 
Blautia, uncultivated 

Ruminococcaceae (PAC000661), 
uncultivated Erysipelotrichaceae 

(CCMM), Faecalibaculum ↑ 
(Sausage+inulin and calcium) 

 
Bacteroides, Parabacteroides, 
Alistipes, Clostridium, Dorea, 

uncultivated Bacteroidetes 
(PAC002482), Muribaculaceae 
(PAC001472), Lachnospiraceae 

(KE159600), unclassified Firmicutes 
↓ (Sausage+inulin and calcium) 

 
Lactobacillus ↑ (q=0.63; 

Sausage+calcium, Sausage+inulin 
and calcium) 
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Table 1. Human and animal studies assessing the effect of meat product consumption on the composition of gut microbiota (continued)

Citation Control treatment Experimental treatment Feeding 
duration

Animal  
model 

Effect on the gut microbiota 

Fernandez  
et al. (2020) 

Control diet 
(universal feed) 

Acorn-fed Iberian  
commercial ham 

2 wk 20 Male 
Fischer 344 

rats 
(5 wk old) 
(ulcerative 
colitis was 

induced with 
dextran sulfate 

sodium in 
drinking water 
ad libitum for 

1 wk) 

Phylum   
Bacteroidetes, Actinobacteria, 

Proteobacteria ↑ 
Firmicutes, Synergistetes, 

Deferribacteres ↓ 
 

Family 
Coriobacteriaceae, Bacteroidaceae, 

Porphyromonadaceae, Rikenellaceae, 
Desulfovibrionaceae, Sutterellaceae, 

Staphylococcaceae, Enterococcaceae, 
Clostridiaceae Family XIII, 

Eubacteriaceae, 
Acidaminococcaceae, 
Erysipelotrichaceae, 
Enterobacteriaceae ↑ 

 
Marinifilaceae, Prevotellaceae, 

Sphingobacteriaceae,  
Ruminococcaceae, Lachnospiraceae, 

Clostridiaceae,  
Veillonellaceae, Lactobacillaceae, 

Cohaesibacteriaceae ↓ 
 

Genus 
Bacteroides, Butyricimonas, 
Parabacteroides, Alistipes, 

Staphylococcus, Enterococcus, 
Blautia, Dorea, Absiella, 
Phascolarctobacterium, 

Parasutterella, Bilophila ↑ 
 

Prevotella, Mucispirillum, 
Lactobacillus, Clostridium, 

Lachnoanaerobaculum, 
Ruminococcus, Oscillibacter, 

Desulfovibrio ↓ 

 

or beta-diversity of the gut microbiota between the animal- and plant-based diets, but did affect the composition of the gut 

microbiota (Kohnert et al., 2021). The meat-rich diet increased Roseburia, Faecalibacterium, and Blautia more than the strict 

vegan diet (Kohnert et al., 2021). High animal protein intake and low carbohydrates also affected the reduction of 

Bacteroides spp. while reducing the abundance of the butyrate producer Roseburia/Eubacterium rectale (Russell et al., 2011). 

Meat is a major component of an animal-based diet. Meat is classified as follows: red meat (beef and pork), white meat 

(chicken and fish), and processed meat. Recent epidemiological studies have reported higher mortality risks and certain 

chronic diseases in groups that consume more red and processed meat (Al-Shaar et al., 2020; Petermann-Rocha et al., 2021). 

Moreover, the WHO classified red meat as group 2A, a probable carcinogen (Bouvard et al., 2015). In a review of more than 

800 epidemiological studies, >10 studies found a 17% increased risk of colorectal cancer (CRC) for every 100 g increase in 

red meat intake. Nevertheless, research on the effect of meat product consumption on the gut microbiome remains unclear, 

and evidence on the effect on health is insufficient. 
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Consumption of red meat affects the gut microbiome. Consuming 200 g of red meat daily significantly reduced Clostridium 

sp. (Foerster et al., 2014). However, findings on the health effect of Clostridium sp. are inconsistent because the changes that 

occur at the species level are very distinct. In addition, consuming 380 g of beef for 4 weeks affected the reduction of 

diarrheal disease-related Bacteroides fragilis and the increase of intestinal movement regulator Bifidobacterium adolescentis 

(Hentges et al., 1977). Meanwhile, there are studies comparing the effects of red and white meat consumption on the gut 

microbiome. A beef-based diet increased the relative abundance of Lachnospira, the Lachnospiraceae NK4A136 group, and 

Ruminococcus 2, whereas the chicken-based diet did not show significant changes (Zhao et al., 2022). After consuming a 

beef-based diet, Akkermansia muciniphila was reduced and blood cell counts were elevated, altering markers associated with 

inflammation. Replacing the beef-based diet with a chicken-based diet reduced inflammation-related monocytes and 

basophils. This appears to be related to the chicken-based diet’s suppression of Bacteroides ovatus, a factor in generating 

immunoglobulin A. In an intervention study in which pork or chicken was consumed, both groups altered the gut microbiota 

in a similar pattern, with reductions in the Bacteroidetes phylum, Bacteroidaceae, and Christencellaceae families (Dhakal et 

al., 2022). However, in a cross-sectional study observing pork and chicken eaters, high Bacteroidetes levels were found in the 

chicken eaters, and differences were observed at the species level (Shi et al., 2021). 

It is well-recognized that meat consumption is harmful to persons with diseases. Red meat may increase the gut 

microbiota’s production of uremic toxins such as trimethylamine (TMA) n-oxide (TMAO), indoxyl sulfate, and p-cresyl 

sulfate. These uremic toxins are linked to a higher risk of cardiovascular death (Mafra et al., 2018). In addition, red meat, 

unlike white meat, is associated with CRC (Sasso and Latella, 2018). This is mainly because of the red-colored heme iron 

found in large quantities in the muscle myoglobin of red meat. Heme iron causes direct harm, such as causing cytotoxic 

damage to colonic epithelial cells, and indirect harm by inducing alterations of the gut microbiota (Ijssennagger et al., 2012). 

A red meat diet rich in heme iron increases Streptococcus bovis, Fusobacterium, Clostridium, and Helicobacter pylori, which 

are related to colorectal carcinogenesis (Sasso and Latella, 2018). However, it is unclear whether the increase or decrease in 

the gut microbiome caused by certain substances, such as toxins and heme iron, contributes to diseases. 

Meanwhile, in inflammatory bowel disease (IBD)-induced mouse experiments, high-dose red meat induced intestinal 

microbial imbalance and reduced the relative abundances of Lachnospiraceae_NK4A136_group, Faecalibaculum, Blautia, 

and Dubosiella (Li et al., 2021). This results from a study that contradicts the previous healthy human study in which beef 

intake increased Lachnospiraceae_NK4A136_group. Lachnospiraceae_NK4A136_group is a butyrate-producing bacteria 

that protects the intestinal mucosal and reduces inflammation (Li et al., 2021; Zhao et al., 2022). 

Taken together, red, white, and processed meats are all observed to have different effects on the gut microbiome. However, 

there are currently insufficient studies that compile adequate information to determine consistent changes in the gut 

microbiome. In addition, like other food consumption, excessive meat consumption has also been linked in studies to the 

emergence of disease, albeit the exact mechanisms related to alterations in the gut microbiome are unknown. 

 

Processed meat products 
The WHO classified processed meats as group 1 carcinogens (Bouvard et al., 2015). The consumption of processed meat is 

known to increase the incidence of CRC. N-nitroso compounds, such as nitrates used as preservatives in processed meat, are 

considered the leading cause of CRC. Moreover, certain microorganisms in the gut can reduce nitrate to nitrite through 

metabolic processes (González-Soltero et al., 2020). However, a diet containing processed meat and an intake of nitrate-rich 

water did not show significant changes in the fecal microbiome (Sinha et al., 2021).  
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One human study confirmed the correlation between fried meat intake and gut microbiota. A randomized controlled trial 

was conducted for 4 weeks, and the gut microbiota of 59 participants in the group treated with fried meat and 58 participants 

in the control group with restricted fried meat intake were compared. In the gut microbiome of the fried meat intake group, 

Lachnospiraceae and Flavonifractor decreased, and Dialister, Dorea, and Veillonella increased (Gao et al., 2021). 

There are two studies in rats on the correlation between consuming sausage and the modulation of gut microbiota. In one 

study, rats were fed for 4 weeks on one of three diets: inulin-fortified pork sausage, control pork sausage, or standard chow 

diet. Rats in the inulin-fortified pork sausage group had increased abundances of Actinobacteria, unclassified Lachnospiraceae, 

Erysipelotrichaceae, Bifidobacterium, and Bacteroides uniformis. In addition, unlike conventional sausages, the sausage 

fortified with inulin showed similar effects to the general dietary fiber intake, such as increasing short-chain fatty acid 

(SCFA) and Bifidobacteria (Thøgersen et al., 2018). In a subsequent study, rats were fed for 4 weeks on one of four diets: 

control sausage, sausage with added inulin and calcium, sausage with added inulin, and sausage with added calcium. In the 

gut microbiota of the two groups of rats fed the calcium-rich sausage and calcium-added inulin-fortified sausage, Firmicutes 

increased, and Bacteroidetes decreased at the phylum level. At the genus level, Ruminococcaceae and Staphylococcus were 

increased in both groups, and in particular, Bifidobacteria were increased in the intestinal microflora of rats in the group fed 

sausages calcium-rich and fortified with inulin (Thøgersen et al., 2020). 

Acorn-fed Iberian ham is a traditional cured meat product. A study was conducted on changes in gut microbiota caused by 

an acorn-fed ham diet using rats as an experimental model. The acorn-fed ham diet had a lower carbohydrate content and 

higher protein content than that of the control diet, resulting in increased proteolytic metabolism-related Bacteroidetes and 

Proteobacteria and decreased saccharolytic metabolism-related Firmicutes at the phylum level. In addition, Dorea, 

Phascolarctobacterium, or Butyricimonas, which are highly related to ulcerative colitis disease, were decreased at the genus 

level (Fernández et al., 2020). 

In conclusion, consumption of different types of processed meats can cause changes in the gut microbiome. However, 

processed meat consumption was not associated with adverse changes in the gut microbiome, such as an increase in 

pathogenic bacteria or dysbiosis. These results show that there is no clear causal link between processed meat consumption 

and adverse health effects of changes in the gut microbiome. 

 

Meat protein 
Proteins can show different changes in the composition of the intestinal microbiota depending on the type, such as plant 

and animal origin. Animal food-originated protein is a great source of nutrients and can affect the composition of the gut 

microbiome (Lang et al., 2018). However, no human study has directly tested the effect of meat protein intake on the 

modulation of the gut microbiome; however, there have been animal studies. 

In one study using a rat model, the effect of various dietary proteins, such as plant (soy), dairy (casein), red meat (beef and 

pork), and white meat (chicken and fish) proteins, on the composition of gut microbiota was assessed (Zhu et al., 2015). At 

the phylum level, the group fed white meat protein had a higher abundance of Firmicutes but lower Bacteroidetes than the 

other groups. Conversely, the chicken protein-fed group had a higher abundance of Actinobacteria, and the rats fed beef 

protein had a higher abundance of Proteobacteria. At the genus level, Ruminococcaceae and Lactobacillaceae were abundant 

in the group fed red meat protein, and Lactobacillaceae were more abundant in the group fed white meat protein. 

Consumption of meat protein reduced serum lipopolysaccharide-binding protein (LBP) compared to soy protein. Typically, 

the presence of LBP in the blood is regarded as a biomarker of an inflammatory reaction. This may be related to the 
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composition of the gut microbiome. Bacteroidetes are major lipopolysaccharide (LPS)-producing bacteria, which are reduced 

by consuming meat proteins. Therefore, casein and meat protein intake may help maintain gut microbiome balance and 

reduce antigen load and inflammatory response. In addition, when comparing each group, meat proteins, mainly white meat 

proteins, contained more Lactobacillus than non-meat proteins (casein, soy). Lactobacillus is well known as representative 

probiotic bacteria. In other words, the recommended level of meat protein intake could help the growth of beneficial intestinal 

bacteria such as Lactobacillus (Zhu et al., 2015).  

White meat-originated protein consumption has been linked to alterations in the gut microbiome in two rat model studies. 

Zhu et al. compared the feces of 4-week-old and 64-week-old rats fed a chicken protein diet. The results showed that the gut 

microbiome composition differed significantly between young and middle-aged mice. At the phylum level, Firmicutes 

decreased for middle-aged rats but increased for young rats. However, the level of Bacteroidetes increased for middle-aged 

rats and decreased for young rats. At the genus level, the relative abundance of the beneficial bacterium Lactobacillus 

increased by chicken protein in the young group. In contrast, it had the opposite effect in the middle-aged group (Zhu et al., 

2016a). In another study, the relative abundance of Lactobacillus was higher in the chicken protein group than in the casein 

control group; it also showed the highest levels of organic acids, including lactate, which can promote the growth of 

Lactobacillus (Zhu et al., 2017).  

A. muciniphila is considered a next-generation probiotic bacteria (Ross, 2022). It plays significant roles in lipid metabolism 

and enhances intestinal immune function to prevent obesity, IBD, and diabetes (Rodrigues et al., 2022). In a study that 

compared the effects of soy and chicken protein-based diet intake on the composition of intestinal microbiota using a germ-

free mice model, compared to a soy protein-based diet, a chicken protein-based diet helped the growth of A. muciniphila and 

maintained mucus barrier function and intestinal homeostasis (Zhao et al., 2019b). 

Overall, red meat proteins can modulate the alteration of the gut microbiome in a direction that reduces LPS-producing 

bacteria. White meat protein may help maintain gut homeostasis by increasing Lactobacillus or A. muciniphila levels. 

However, numerous perspectives on the gut microbiota of meat protein consumption have been reported in prior research. 

Therefore, more research is required to provide clear scientific evidence. 

 

Effects of Dairy Products and Dairy Protein on the Gut Microbiota 

Dairy products 
Investigations have examined how dairy products, including milk, yogurt, and cheese, affect the gut microbiome (Table 2). 

Two studies reported the effects of the quantity of dairy products on the gut microbiota. Swarte et al. (2020) divided 46 

healthy overweight adults into high-dairy diet (HDD) and a low-dairy diet (LDD) groups for 6 weeks. HDD showed 

relatively higher Streptococcus, Leuconostoc, and Lactococcus abundances and lower Faecalibacterium and Bilophila 

abundances. At the species level, the abundances of Streptococcus thermophilus and Leuconostoc mesenteroides were 

increased; however, Faecalibacterium prausnitzii and Clostridium aldenense were decreased. Predicted metabolic pathways 

were also studied; however, there were no significant changes by HDD (Swarte et al., 2020). Alternatively, a randomized 

controlled trial was performed in one human study for 24 weeks; however, there was no significant change in gut microbiota 

composition or diversity according to the difference in dairy intake (Bendtsen et al., 2018).  

Another human study analyzed the correlation between consuming whole milk and gut microbiota. In the 3-month 

randomized, double-blind study, 24 of 64 male participants received 500 mL of bovine milk daily. Then, the relative  
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Table 2. Human and animal studies assessing the effect of dairy product consumption on the composition of gut microbiota

Citation Study design Intervention Trial 
duration

Participants Effect on the gut microbiota Other health or 
physiological 
observations 

Swarte et al. 
(2020) 

Randomized, 
cross-over 

trial 

Quantity of dairy 
High-dairy diet 

(HDD);  
5–6 dairy portion/d 

Low-dairy diet 
(LDD); ≤1 dairy 

portion/d 

6 wk 46 Healthy 
overweight 
participants  

45–65 yr 
Body mass index 

(BMI) 25–30 

In HDD 
Genus  

Streptococcus, Leuconostoc, 
and Lactococcus ↑ 

Faecalibacterium and 
Bilophila ↓ 

 
Species  

Streptococcus thermophilus ↑ 
Erysipelatoclostridium 

ramosum ↑ 
Leuconostoc mesenteroides ↑ 

Faecalibacterium prausnitzii ↓ 
Clostridium aldenense ↓ 

Acetivibrio ethanolgignens ↓ 
Bilophila wadsworthia ↓ 

Lactococcus lactis ↓ 

Predicted metabolic 
pathways were not 
significantly altered 

due to a HDD 

Bendtsen et 
al. (2018) 

Randomized, 
controlled, 

parallel trial 

Quantity of dairy 
High dairy (HD); 

1,500 mg calcium/d 
Low dairy (LD); 

 600 mg calcium/d 

24 wk 80 Overweight or 
obese participants

18–60 yr 
BMI 28–36;  

40 consumed HD 
and  

40 consumed LD

No significant taxonomic 
changes in phylum and  

genus level 
No significant changes in 
alpha- or beta-diversity 

Veillonella ↓ in LD  
(vs baseline) 

In both groups 
Body weight ↓  
(vs baseline) 
Fat mass ↓  

(vs baseline) 
 

Respiratory quotient 
(RQ) ↓ in HD 
RQ ↑ in LD 

Fernandez-
Raudales et 
al. (2012) 

Randomized, 
double blind 

trial 

Bovine milk,  
500 mL/d 

3 mon 64 Male 
participants  

20–45 yr 
BMI 25–44;  
24 consumed 
bovine milk 

Phylum 
Proteobacteria ↑ 

 
Genus 

Lactobacillus ↑ (vs baseline) 
 

Alpha-diversity 
ACE ↓ 

Chao1 ↓ 

NA 

Alvaro et al. 
(2007) 

Cross-
sectional 

study 

Yogurt  
200–400 g/d 

Not 
applicable

(NA) 

51 Healthy 
participants 
35–60 yr;  

30 consumed 
yogurt 

Enterobacteriaceae ↓ 
No significant difference in 

short-chain fatty acid (SCFA) 
concentration 

β-galactosidase ↑ 

González et 
al. (2019) 

Cross-
sectional 

study 

NA NA 130 Healthy 
participants 

mean age of 58.18

Natural yogurt consumers 
Akkermansia ↑ 

 
Sweetened yogurt consumers  

Bacteroides ↓ 
 

Cheese consumers  
SCFA (acetate, propionate  

and butyrate) ↑ 

Serum levels of  
C-reactive protein 
(CRP) were also 

significantly reduced 
in yogurt consumers

Le Roy et al. 
(2022) 

Cross-
sectional 

study 

Yogurt 
125 g at least once  

a wk 

NA 4,117 Adult 
participants 
mean age of  

67.6 yr 

Bifidobacterium animalis 
subsp. lactis ↑ 

Streptococcus thermophilus ↑ 

Visceral fat mass ↓
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Table 2. Human and animal studies assessing the effect of dairy product consumption on the composition of gut microbiota (continued)

Citation Study design Intervention Trial 
duration

Participants Effect on the gut microbiota Other health or 
physiological 
observations 

Tillisch et al. 
(2013) 

Randomized, 
controlled, 

parallel trial 

Fermented milk 
2×125 g/d 

4 wk 36 Healthy female 
participants 
18–55 yr;  

12 consumed 
fermented milk

No significant changes in the 
gut microbiota composition 

after the intervention 

Activity of brain 
regions that control 

central processing of 
emotion and sensation 

was affected by 
intervention 

Lisko et al. 
(2017) 

Parallel trial Yogurt 
250 g/d 

6 wk 6 Healthy 
participants 

18–54 yr 

No significant changes in the 
gut microbiota composition 

and diversity 

NA 

Link-Amster 
et al. (1994) 

Randomized, 
controlled trial 

Fermented milk 
3×125 g/d 

3 wk 30 Healthy adult 
participants  
F=14, M=16 
19–59 yr; 16 

consumed 
fermented milk

Genus 
Lactobacillus ↑ 

Bifidobacterium ↑ 
 

Species 
Lactobacillus acidophilus ↑ 

Serum IgA and IgG ↑

Volokh et al. 
(2019) 

Before and 
after trial 

Yogurt 
2×125 g/d 

30 d 150 Healthy adult 
participants 

18–40 yr 
BMI 18–28 

No significant change in alpha-
diversity after intervention 

 
Genus 

Bifidobacterium ↑ 
Lachnoclostridium/unclassified 

↓ 
Roseburia ↓ 

 
Species 

B. bifidum, B. adolescentis,  
B. animalis, B. bifidum,  

B. longum ↑ 
Adlercreutzia equolifaciens ↑ 
Slackia isoflavoniconvertens ↑ 

Collinsella aerofaciens ↑ 
Catenibacterium. mitsuokai ↑ 

Streptococcus. 
thermophilus/vestibularis ↑ 

NA 

Burton et al. 
(2017) 

Randomized, 
double-blind, 

cross-over 
trial 

Yogurt 
400 g/d 

2 wk 14 Healthy male 
participants 
22–27 yr;  

7 consumed yogurt

Lactobacillus delbrueckii spp. 
bulgaricus ↑ 

Streptococcus salivarius spp. 
thermophilus ↑ 

Tumor necrosis factor 
(TNF)α, interleukin 

(IL)-6 and C-C motif 
chemokine ligand 5 

(CCL5) ↓  
(vs baseline) 

Alvarez et al. 
(2020) 

Randomized, 
double-blind, 

controlled, 
parallel trial 

Yogurt 
100 g/d or  
3×100 g/d 

4 wk 96 Healthy adult 
participants 

18–55 yr 
BMI 18.5–30.0; 

25 consumed 100 
g/d yogurt and 
24 consumed 

3×100 g/d yogurt

Lactobacillus paracasei ↑ 
Lactobacillus rhamnosus ↑ 
No significant difference in 

either alpha- or beta-diversity 

No clinically 
significant changes in 
defecation frequency, 

stool consistency 
scores, composite 

score and frequency 
of digestive symptoms 

(abdominal pain, 
bloating, flatulence 
and rumbling) or 

vital signs 
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Table 2. Human and animal studies assessing the effect of dairy product consumption on the composition of gut microbiota (continued)

Citation Study design Intervention Trial 
duration

Participants Effect on the gut microbiota Other health or 
physiological 
observations 

García-
Albiach et al. 
(2008) 

Randomized, 
double-blind, 

cross-over 
trial 

Yogurt 
3×125 g/d 

2 wk 79 Healthy young 
participants 
mean age of  

23.6 yr;  
32 consumed 
fresh yogurt 

Lactic acid bacteria ↑ 
Clostridium perfringens ↑ 

Bacteroides ↓ 

NA 

Unno et al. 
(2015) 

Before and 
after trial 

Fermented milk  
2×140 mL/d 

3 wk 6 Healthy female 
participants 

20–24 yr 

Phylum 
Firmicutes ↑ 

Bacteroidetes ↓ 
Alpha-diversity (Shannon 

index) ↓ 

NA 

Yang and 
Sheu (2012) 

Parallel trial Yogurt 
200 mL/d 

4 wk 38 Helicobacter 
pylori-infected 
and 38 healthy 

children 
4–12 yr 

E. coli ↓ 
Bifidobacterium spp. ↑ 

Bifidobacterium spp./E. coli 
ratio ↑ 

In H. pylori infected 
children 

13C-Urea breath test ↓ 
(vs baseline) 

IgA ↑ 
IL-6 ↓ 

Veiga et al. 
(2014) 

Randomized, 
double blind, 
controlled, 

parallel trial 

Fermented milk 
2×125 g/d 

4 wk 28 Female 
inflammatory 
bowel disease 

patients 
20–69 yr;  

13 consumed 
fermented milk

Bilophila wadsworthia ↓ 
Butyrate-producing bacteria ↑ 

SCFA ↑ 

NA 

Yılmaz et al. 
(2019) 

Randomized, 
controlled, 
open-label, 
parallel trial 

Kefir 
400 mL/d 

4 wk 45 Inflammatory 
bowel disease 

patients; 10 Crohn 
disease (CD) 
patients and  
15 ulcerative 

colitis patients 
consumed kefir

Lactobacillus ↑ In CD 
erythrocyte 

sedimentation rate ↓
CRP ↓  

hemoglobin ↑ 
bloating ↓  

feeling good scores ↑

Bellikci-
Koyu et al. 
(2019) 

Randomized, 
controlled, 

parallel trial 

Kefir 
180 mL/d 

12 wk 22 Metabolic 
syndrome patients

18–65 yr;  
12 consumed kefir

Actinobacteria ↑ 
No significant difference in 

either alpha- or beta-diversity 

Fasting insulin, 
homeostatic model 

assessment for insulin 
resistance  

(HOMA-IR), TNF-α, 
interferron (IFN)-γ, 

and systolic and 
diastolic blood 

pressure ↓  
(vs baseline) 

Hric et al. 
(2021) 

Randomized, 
controlled, 

parallel trial 

Bryndza cheeses 
30 g/d 

4 wk 22 Female 
participants 

18–65 yr 
BMI 20–40;  
13 consumed 

Bryndza cheese

No significant change in alpha-
diversity within and between 

the groups. 
 

Order 
Lactobacillales ↑ (vs baseline) 

 
Family 

Streptococcaceae ↑  

NA 
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Table 2. Human and animal studies assessing the effect of dairy product consumption on the composition of gut microbiota (continued)

Citation Study design Intervention Trial 
duration

Participants Effect on the gut microbiota Other health or 
physiological 
observations 

(vs baseline) 
 

Genus 
Lactococcus and  

Streptococcus ↑ (vs baseline) 
Phascolarctobacterium and 

Butyricimonas ↑ (vs baseline) 

Milani et al. 
(2019) 

Randomized, 
controlled, 

parallel trial 

Parmesan cheese 
45 g/d 

7 d 20 Healthy 
participants 

Bifidobacterium mongoliense ↑ NA 

Firmesse et 
al. (2007) 

Before and 
after trial 

Camembert cheese 
2×40 g/d 

4 wk 12 Healthy 
participants  

(no age specified)

Enterococcus faecalis ↑  
(vs baseline) 

NA 

Firmesse et 
al. (2008) 

Before and 
after trial 

Camembert cheese 
2×40 g/d 

4 wk 12 Healthy 
participants  

19–40 yr 

Lactococcus lactis ↑ 
Leuconostoc mesenteroides ↑ 

No significant changes in 
bacterial enzyme activities and 

SCFA concentration 

NA 

 
abundance of members in the phylum Proteobacteria significantly increased. At the genus level, Lactobacillus and Roseburia 

tended to increase, whereas Prevotella decreased (Fernandez-Raudales et al., 2012). 

There was more research on yogurt intake and gut microbiota change than on other dairy products. First, three cross-

sectional studies were identified from each cohort study performed in France, Spain, and the United Kingdom. Thirty healthy 

adults who consumed at least 200–400 g of yogurt daily had significantly lower Enterobacteriaceae levels than those who did 

not consume yogurt daily. Although there was no difference in the intestinal SCFA concentration between the groups, β-

galactosidase activity was significantly increased in the yogurt intake group (Alvaro et al., 2007). In another study, annual 

dietary fermented food intake was investigated by a food frequency questionnaire (FFQ) from 130 people. Natural yogurt 

consumers showed significantly higher fecal levels of Akkermansia, and sweetened yogurt consumers displayed significantly 

lower fecal levels of Bacteroides. Additionally, cheese consumers presented significantly higher levels of the major fecal 

SCFAs (acetate, propionate, and butyrate; González et al., 2019). According to another FFQ survey from 4,117 participants, 

>73% consumed 125 g of yogurt at least once weekly and had higher abundances of Bifidobacterium animalis subsp. Lactis 

and S. thermophilus (Le Roy et al., 2022). 

In a study of 36 healthy adult women who consumed fermented milk for 4 weeks, no significant changes in gut microbiota 

were found (Tillisch et al., 2013). Similarly, six healthy adults who consumed yogurt for 6 weeks showed no significant 

changes in gut microbiota composition or diversity (Lisko et al., 2017). However, unlike these two studies, most studies 

found that consuming fermented dairy products affected gut microbiota, particularly Lactobacillus and Bifidobacterium. 

Fermented milk intake was associated with increased intestinal Lactobacillus (particularly Lactobacillus acidophilus) and 

Bifidobacterium (Link-Amster et al., 1994). It was also confirmed that the intestinal Bifidobacterium increased, while 

Roseburia decreased after consuming fermented milk (Volokh et al., 2019). In addition, three randomized, double-blind 

studies found that yogurt intake affected the increase in intestinal Lactobacillus spp. Specifically, consuming 400 g of yogurt 
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daily for 2 weeks was associated with increased intestinal Lactobacillus delbrueckii spp. bulgaricus and Streptococcus 

salivarius spp. thermophiles (Burton et al., 2017). One study found that yogurt consumption increased Lactobacillus 

paracasei and Lactobacillus rhamnosus but did not affect alpha- or beta-diversity (Alvarez et al., 2020). The increased L. 

rhamnosus in this study has been shown to improve the immune response in another study (Kang et al., 2021a). García-

Albiach et al. (2008) reported that yogurt consumption increased the intestinal density of lactic acid bacteria (LAB) and the 

pathogen Clostridium perfringens (García-Albiach et al., 2008). Similarly, fermented milk intake increased Firmicutes and 

decreased Bacteroidetes at the phylum level (Unno et al., 2015).  

Consumption of fermented dairy products also inhibits pathogens in pathological conditions. In 38 H. pylori-infected children, 

when 200 mL of yogurt was consumed daily for 4 weeks, the representative pathogen Escherichia coli decreased, and the 

beneficial bacteria Bifidobacterium spp. increased (Yang and Sheu, 2012). Additionally, fermented milk consumption decreased 

Bilophila wadsworthia levels in patients with IBD, which is a strain known to cause IBD by inducing barrier collapse by 

producing hydrogen sulfide. Meanwhile, the intake of fermented milk increased intestinal SCFA concentration and significantly 

increased the level of butyrate-producing bacteria. Among SCFAs, butyrate is particularly helpful in strengthening the gut 

barrier (Veiga et al., 2014). Kefir intake significantly increased the abundance of Lactobacillus in the gut microbiota of patients 

with IBD (Yılmaz et al., 2019). Another study showed that ingestion of kefir increased the relative abundance of Actinobacteria 

but had no significant effect on Bacteroidetes, Proteobacteria, or Verrucomicrobia (Bellikci-Koyu et al., 2019). 

Cheese is a high-protein-containing dairy product, a densely nutrient-rich solid food, unlike raw milk or yogurt. Four studies 

reported the effect of cheese consumption on gut microbiota. When 13 female adults consumed 30 g of Bryndza cheese daily for 

4 weeks, there was no change in alpha-diversity; however, the relative abundance of LAB (Lactobacillales, Streptococcaceae, 

Lactococcus, and Streptococcus) significantly increased. Additionally, SCFA producers such as Phascolarctobacterium and 

Butyricimonas increased significantly in Bryndza cheese consumers (Hric et al., 2021). A human pilot study of Parmesan cheese 

consumption for 7 days showed that Bifidobacterium mongoliense strains from cheese could transiently colonize the human gut 

(Milani et al., 2019). In two studies of Camembert cheese intake affecting gut microbiota, higher Enterococcus faecalis, L. lactis, 

and L. mesenteroides levels were found in fecal samples (Firmesse et al., 2007; Firmesse et al., 2008). 

In conclusion, intake and types of dairy products are important gut microbiome-changing factors. A higher dairy product 

intake increases the intestinal Lactobacillus and Bifidobacterium levels. In H. pylori infection or IBD condition, consuming 

fermented dairy products may help hosts suppress the pathogen proliferation. Most reported studies have confirmed that 

consuming dairy products can improve host health by increasing the number of beneficial bacteria in the gut. 

 

Dairy protein 
Numerous studies are underway to determine why consuming dairy products alters the gut microbiome. Dairy nutrients have 

been the subject of several studies (Ha et al., 2021; Lim et al., 2020). It is also used to enhance the quality of other foods (Kang 

et al., 2021b). Several studies have examined how dairy proteins affect the gut microbiome. The gut microbiome of rats changed 

according to the intake of milk protein. When 14% or 53% of whole milk protein was fed to rats, there were changes in 

microbiota composition, such as a decrease in gene copy numbers in Clostridium coccoides and Clostridium leptum groups in 

the high protein group compared to that in the normal protein group (Liu et al., 2014). However, studies on casein or whey 

proteins have been increasing. Casein and whey proteins are known as the main proteins in milk. In particular, casein constitutes 

approximately 80% of the total protein in milk, while whey protein accounts for approximately 20% (Davoodi et al., 2016).  

One study fed casein to mice for 2 weeks. The abundance of Bacteroidetes at the phylum level significantly increased in the 
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casein-treated group, while Lachnospiraceae and Ruminococcaceae decreased at the family level, and Parabacteroides and 

Bacteroides increased at the genus level (Kim et al., 2016). Other studies have also shown that the gut microbiome changes 

when high casein concentrations are ingested. When the rats were fed diets containing either 19.4% or 52% casein for 24 weeks, 

the gut microbiota of the groups fed high casein concentrations were altered. At the phylum level, there was a relative expansion 

of Actinobacteria and a relative contraction of Saccaribacteria. At the genus level, there was an expansion of Bifidobacterium, 

Bacteroides, Parabacteroides, and Oscillospira (Snelson et al., 2021). Alternatively, another study reported that changes in the 

gut microbiota caused by a high casein intake could be detrimental to intestinal health. This is because the relative abundance of 

pathogens in the colon increased in the 54% high-concentration casein intake (HCD) group compared to that in the normal 

intake (20% casein; NCD) group. Escherichia/Shigella, Enterococcus, Streptococcus, and sulfate-reducing bacteria increased 

>2–5 times in the HCD group compared to the NCD group. In contrast, Ruminococcus, Akkermansia, and F. prausnitzii, which 

are generally regarded as beneficial bacteria in the large intestine, were reduced (Mu et al., 2016). In another study, the number 

of E. coli increased in the HCD group, whereas bacteria that protect intestinal epithelium (A. muciniphila, Bifidobacterium), 

propionate-producing bacteria (Prevotella), butyrate-producing bacteria (Roseburia/Eubacterium rectale), and acetate producing 

bacteria (Ruminococcus bromii), were reduced (Mu et al., 2017). However, studies remain insufficient to suggest that changes in 

the gut microbiota caused by a high casein intake may be detrimental to gut health. 

Conversely, casein is a non-meat protein that changes gut microbiota close to soy protein, and there was no difference in 

alpha- and beta-diversity between human groups consuming casein or soy protein (Beaumont et al., 2017). In animal 

experiments, casein intake was similar to the gut bacteria composition of soy protein-treated groups rather than chicken, beef, 

and fish protein-treated groups. One study showed that casein consumption was related to the relative abundance of 

Lachnospiraceae (Zhu et al., 2016b). Similar to this study, rats fed with soy protein and casein had similar gut bacterial 

profiles at the family level that was characteristic of Lachnospiraceae (Zhu et al., 2015). Members of the Lachnospiraceae 

family are known to protect the gut against human colon cancer by producing butyrate. Additionally, the lower relative 

abundance of Lactobacillus is associated with casein intake (Rist et al., 2014; Zhu et al., 2015; Zhu et al., 2016b).  

Whey protein affects gut microbiota composition differently compared to casein. When high-fat diet mice were treated with 

casein or whey protein, differences in beta-diversity were observed between groups (Boscaini et al., 2019). Another study 

showed a significantly higher proportion of Streptococcaceae at the family level in the group fed a diet containing casein as the 

primary protein source (Boscaini et al., 2019; Boscaini et al., 2020; Nilaweera et al., 2017). In addition, high proportions of 

Lactobacillus and Bifidobacterium were mainly observed in the group that consumed whey protein (Boscaini et al., 2019; 

Boscaini et al., 2020; Boudry et al., 2013; McAllan et al., 2014; Schaafsma et al., 2021; Sprong et al., 2010). The combination of 

Lactobacillus and Bifidobacterium has been mentioned in one study as a potential candidate strain to be used for immune 

enhancement, thus an increase in the proportion of Lactobacillus and Bifidobacterium in the gut microbiome could potentially 

associated with immune enhancing effects (Yu et al., 2022). In two studies by Boscaini et al. comparing casein and whey 

protein, at the family level, the relative abundance of Streptococcaceae was higher in the casein group, and the relative 

abundance of Lactobacillaceae was higher in the whey protein group. At the genus level, the relative abundance of Lactococcus 

was higher in the casein group, and the relative abundances of Parabacteroides, Lactobacillus, and Bifidobacterium were higher 

in the whey protein group (Boscaini et al., 2019; Boscaini et al., 2020). In a study by Nilaweera et al. (2017) casein intake 

increased the proportion of Enterobacteriaceae and Streptococcaceae compared to the whey protein intake group (Nilaweera et 

al., 2017). Compared to casein, cheese whey protein increased fecal Lactobacilli and Bifidobacteria counts in a colitis-induced 

rat model (Sprong et al., 2010), and a lactoperoxidase and lactoferrin-enriched whey protein isolate increased 
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Lactobacillaceae/Lactobacillus and decreased Clostridiaceae/Clostridium in high-fat diet-fed mice (McAllan et al., 2014). In a 

human study to examine sleep quality and stress, those on a whey protein-based diet had significantly increased relative 

abundances of Bifidobacterium compared to the casein intake group (Schaafsma et al., 2021). Whey peptide extracts with a 

molecular weight of <1 kDa increased Lactobacillus spp. and Bifidobacterium spp. (Boudry et al., 2013).  

In conclusion, a long-term high-protein diet causes gut microbiota imbalance and increases intestinal permeability. 

However, normal levels of casein intake constitute a gut microbiome that regulates the Lachnospiraceae family similarly to 

soy protein. Changes in the gut microbiome by whey protein intake increased beneficial bacteria such as Lactobacillus and 

Bifidobacterium, similar to the changes in the intake of dairy products. 

 

Effects of Egg Products and Egg Protein on the Gut Microbiota  

Egg products 
We summarized previous studies on the impact of egg products and their proteins on the composition and function of the 

gut microbiome (Table 3). Eggs have different effects on the gut microbiome depending on the species and processing 

method. There are studies on hen egg white (HEW), duck egg white (DEW), and preserved duck egg white (PEW) using rats 

as experimental models. Akkermansia and Peptostreptococcaceae were relatively high in abundance in the HEW and DEW 

groups, respectively. In the PEW group, the intestinal microbe richness was significantly lower than that of other groups, and 

in particular, compared to DEW, Proteobacteria abundance was relatively low. Egg consumption effects on gut microbes 

may differ depending on the egg type and processing method (Yu et al., 2020). 

In a study comparing the effects of duck eggs and preserved duck egg intake on changes in gut microbial composition 

using rats as experimental models, the ingestion of preserved duck eggs increased the α-diversity of gut microbes compared 

to the duck egg group. There was no significant difference at the phylum level; however, Firmicutes/Bacteroidetes were 

decreased. At the genus level, Veillonella, Phascolarctobacterium, Alpinimonas, Coprococcus 3, Coprococcus 2, Gelria, and 

unclassified Methylocystaceae, which were not found in the duck egg group, were found (Meng et al., 2020). 

Egg yolk is a food ingredient commonly used in various processed foods. A study using the mouse as an experimental 

model found that Firmicutes and Epsilonbacteraeota were relatively decreased at the phylum level when egg yolk was fed. In 

addition, Lachnospiraceae and Ruminococcaceae were significantly reduced at the family level, and Erysipelotrichaceae was 

significantly increased. At the genus level, Parasutterella and Coprostanoligenes showed a relatively high abundance 

(Fukunaga et al., 2020). Parasutterella has been defined as a core component of the human and mouse gut microbiota and has 

been correlated with bile acid maintenance and cholesterol metabolism (Ju et al., 2019). Coprostanoligenes is a bacteria that 

can influence host cholesterol levels. Therefore, these results indicate that egg yolk consumption can induce changes in gut 

microbiota related to cholesterol metabolism (Kenny et al., 2020). 

In a study on the change in gut microbes by comparing the gut microbes of obese and lean rats and treating the obese rats 

with egg white hydrolyzed with pepsin (EWH), the gut microbe composition of obese and lean rats showed significant 

differences at the phylum and genus levels. However, in the gut microbiome composition of obese rats fed EWH, 

Lactobacillus/Enterococcus and C. leptum were similar to those of lean rats. Conversely, the change in the microbial 

composition observed after ingestion of EWH did not show the final weight loss effect in obese rats. Thus, this study suggests 

that, although consumption of EWH can induce changes in gut microbiota composition, it may have difficulty elucidating the 

direct link between changes in gut microbiota composition and its effects on metabolism and health (Requena et al., 2017). 
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Table 3. Human and animal studies assessing the effect of eggs consumption on the composition of the gut microbiota

Citation Study design Intervention Trial 
duration

Participants Effect on the gut 
microbiota 

Other health or 
physiological observations

Thomas et 
al. (2022) 

Randomized, 
controlled cross-

over 

3 eggs/d (4 wk)  
choline bitartrate 

(CB) supplement/d 
(4 wk) 

13 wk 23 Men and 
women classified 
with metabolic 

syndrome (MetS)
(35–70 yr old) 

Phylum 
Firmicutes/ 

Bacteroidetes -  
 

Shannon - 

Not applicable (NA) 

Liu et al. 
(2022a) 

Prospective 
nonrandomized 

2 eggs/d 
(90–100 g,  

460–500 mg 
cholesterol) 

2 wk 9 Healthy males
[29±1 yr old, body 
mass index (BMI) 

22±1 kg/m2] 

Phylum 
Firmicutes/ 

Bacteroidetes -  
 

Shannon -  
Simpson -  
Chao1 - 

NA 

Zhu et al. 
(2020) 

Randomized, 
cross-over 

2 whole eggs  
(100 g)/d (4 wk) 

yolk-free eggs (100 
g)/d (4 wk) 

12 wk 20 
Overweight/obese 
postmenopausal 

women  
[57.7 (±5.64) yr 

old, average BMI 
of 28.34 (±2.96)]

Genus  
Prevotella -  

Anaeroplasma -  
Clostridium -  

Peptostreptococcaceae - 

NA 

Citation Control 
treatment 

Experimental 
treatment 

Feeding 
duration

Body weight Animal model Effect on the gut  
microbiota 

Avirineni  
et al. 
(2022) 

Control diet 
(CON; 4.63 

kcal/g) 

Egg 
albumen+cellulose  
(EC; 4.38 kcal/g) 

Egg albumen+inulin 
(EI; 4.63 kcal/g) 

Whey protein 
isolate+cellulose  

(WC; 4.38 kcal/g) 
Whey protein 
isolate+inulin  

(WI; 4.63 kcal/g) 

9 wk 442.2±28 g 40 Male obesity-prone 
Sprague-Dawley rats  

(3 wk old) 

NA 

Ge et al. 
(2021) 

Dextran sodium 
sulfate (DSS) 

DSS+egg white 
peptide (50 mg) 
DSS+egg white 

peptide (100 mg) 
DSS+egg white 

peptide (200 mg) 

2 wk 20.00±2 g Male BALB/c mice 
(SPF level) 

Phylum 
Firmicutes/Bacteroidetes ↑

 
Genus 

Lactobacillus ↑ 
no rank_f_Ruminococcaceae 
↓ Ruminiclostridium ↓ 

Candidatus_Saccharimonas 
↑ 

Zhang et 
al. (2020) 

Distilled water Egg ovotransferrin 
(OVT) (≈400 mg) 

3 wk 
control, 

3 wk 
OVT, 
8 wk 

control, 
and 8 wk 

OVT 

NA Male C57BL/6J mice 
(young: 3 wk old)  
(adult: 8 wk old) 

Phylum 
Actinobacteria ↓ (Young)
Actinobacteria ↑ (Adult) 

Proteobacteria ↑ (Young)
TM7 ↓ (Adult) 

 
Genus 

Akkermansia ↑  
(Young, Adult) 

 
Shannon - (Young, Adult)
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Table 3. Human and animal studies assessing the effect of eggs consumption on the composition of the gut microbiota (continued)

Citation Control 
treatment 

Experimental 
treatment 

Feeding 
duration

Body weight Animal model Effect on the gut microbiota

Requena  
et al. 
(2017) 

Tap water Egg white 
hydrolyzed with 

pepsin 

12 wk 250–275 g [Zucker 
fatty (fa/fa) rats]

 
150–175 g [Zucker 

lean (+/+) rats] 

20 Male Zucker fatty 
(fa/fa) rats 
(8 wk old) 

 
10 Male Zucker lean 

(+/+) rats 
(8 wk old) 

Phylum 
Bacteroides ↓ 

 
Genus 

Lactobacillus / 
Enterococcus ↓ 

Bifidobacterium ↓ 
 

Species 
Clostridium leptum ↓ 

Yu et al. 
(2020) 

Casein Hen egg white 
(‘HEW’ group);  
duck egg white 
(‘DEW’ group); 

preserved egg white 
(‘PEW’ group) 

8 wk (117 g±10 g) 40 Male Sprague–
Dawley rats 

Phylum 
Firmicutes/Bacteroidetes - 
Proteobacteria (DEW ↑)

Verrucomicrobia (HEW ↑)
 

Family 
Peptostreptococcaceae, 
Moraxellase (DEW ↑) 

Lactobacillaceae, 
Lachnospiraceae (DEW ↓)

 
Genus 

Akkermansia (HEW ↑) 
 

Shannon (HEW ↑) 
Simpson (HEW ↑) 

Ace (PEW ↓) 
Chao 1 (PEW ↓) 

Meng et al. 
(2020) 

Fresh duck eggs Preserved duck eggs 8 wk 110–130 g 24 Male Sprague–
Dawley rats 

Phylum 
Firmicutes - 

Bacteroidetes -  
Firmicutes/Bacteroidetes ↓ 

Proteobacteria - 
 

Genus 
Ruminococcaceae UCG-005 

↓ 
Allobaculum ↓ 

Christensenellaceae R-7 
group ↓  

unclassified Clostridiales ↓
Eubacterium ruminantium 

group ↑ Eubacterium 
xylanophilum group ↑ 

Ruminococcaceae UCG-009 
↑ 

Eubacterium ventriosum ↑
Tyzzerella ↑ 

 
Shannon ↑ 
Simpson ↓ 
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Table 3. Human and animal studies assessing the effect of eggs consumption on the composition of the gut microbiota (continued)

Citation Control 
treatment 

Experimental 
treatment 

Feeding 
duration

Body weight Animal model Effect on the gut microbiota

Fukunaga  
et al. 
(2020) 

Casein-beef 
tallow-based 

diet 

Casein-egg yolk-
based diet 

14 d 35.0±0.4 g 
35.1±0.6 g 

16 Male Kwl:ddY mice 
5 wk old 

Phylum 
Firmicutes ↓ 

Epsilonbacteraeota ↓ 
 

Family 
Lachnospiraceae ↓ 
Ruminococcaceae ↓ 

Erysipelotrichaceae ↑ 
 

Genus 
Parasutterella ↑ 

coprostanoligenes ↑ 
 

Operational taxanomic unit 
(OTU) ↓ 

Shannon ↓ 
Simpson - 

 
Unlike consuming only eggs compared to consuming eggs with prebiotic fiber together, the results of cecal microbiota 

were changed in 111 species’ abundance. The abundances of Actinobacteria, Deinococcus-Thermus, Deferribacteres, and 

Verrucomicrobia were relatively higher than that of the control, and the abundance of Firmicutes species was relatively less 

than that of the control group. These changes in bacterial composition are correlated with the production of plasma 

metabolites, such as plasma butyric acid, propionic acid, and other metabolites derived from carbohydrate, protein, and fat 

metabolism, in an obese male rat model (Avirineni et al., 2022). 

Choline contained in eggs can produce TMA by enzyme reaction of intestinal microbes, and TMA can be converted into 

harmful substances which may trigger metabolic diseases such as TMAO (Salzano et al., 2022). In patients with metabolic 

syndrome, intestinal microbiota and their correlation to metabolites were the subject of a study on the impact of egg 

consumption. It was found that there was no significant effect on microbial diversity or abundance of taxa (Thomas et al., 

2022). Phosphatidylcholine and choline bitartrate are two different forms of choline. Phosphatidylcholine is a type of choline 

derived from soybean and egg yolk. Choline bitartrate is a type of choline produced through chemical synthesis (Smolders et 

al., 2019). There was no significant difference between the baseline group, the group with phosphatidylcholine provided by 

eggs, and the group with choline bitartrate supplement. There was no significant correlation in the correlation analysis 

between intestinal microflora and TMAO. These results suggest that choline supplied from eggs may not be a major 

influencer on TMAO production (Thomas et al., 2022). 

Whole egg consumption increased plasma choline and betaine in overweight postmenopausal women with mild 

hypercholesterolemia; however, it did not increase plasma TMAO or alter gut microbiota composition, such as Prevotella, 

Anaeroplasma, Clostridium, and Peptostreptococcaceae, which are associated with TMAO concentrations (Zhu et al., 2020). 

In addition, whole egg consumption is believed to cause an increase in cholesterol and thereby induce cardiovascular disease. 

However, consuming two eggs daily for 2 weeks without changing their usual diet in people at low risk of developing 

metabolic diseases did not cause any changes in the gut microbiota. However, it rather positively modulated the functions of 

the gut microbiota, improving vascular health and intestinal function (Liu et al., 2022a). 
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Egg protein 
Egg protein refers to the protein found in eggs, which is a complete protein containing all essential amino acids needed by 

the human body (Puglisi and Fernandez, 2022). One of the egg protein-derived peptides, Isoleucine-Arginine-Tryptophan 

(lle-Arg-Trp; IRW) and Isoleucine-Glutamine-Tryptophan (lle-Gln-Trp; IQW), reduce tumor necrosis factor (TNF)-induced 

inflammatory responses and oxidative stress in endothelial cells (Majumder et al., 2013). In one study, consumption of the 

egg protein transferrin-derived peptides IRW and IQW increased the ACE and Shannon index but decreased the Simpson 

index in obese mice induced by a high-fat diet. In addition, administration of IRW and IQW reduced the relative abundances 

of Firmicutes and Parabacteroides, and IRW increased the abundance of Bacteroides, known as the major microorganisms 

that exhibit anti-obesity effects in the intestine. This study showed that ingesting egg protein-derived peptides alleviates high-

fat diet-induced obesity by reprogramming the gut microbiome (Liu et al., 2022b). 

Egg yolks and egg whites have different nutritional compositions. Compared to egg yolk, egg white has a relatively low 

percentage of fat and proteins. In a dextran sulfate sodium (DSS)-induced colitis mouse model study, 200 mg/kg bw of egg 

white peptide ingestion decreased Ruminiclostridium and significantly increased Lactobacillus and Candidatus_Saccharimonas 

in the gut microbiome compared to the DSS group. In the correlation analysis, Lactobacillus and Candidatus_Saccharimonas 

significantly reduced pro-inflammatory cytokines such as interleukin (IL)-1β and TNF-α. This indicates that the ingestion of 

egg white peptides can alleviate colonic inflammation by increasing the relative abundance of beneficial bacteria and 

reducing pro-inflammatory cytokines (Ge et al., 2021). Ovotransferrin (OVT) is an egg white protein well known to have a 

wide range of biological activities, such as anti-inflammatory, antioxidant, and immunomodulatory functions (Lee et al., 

2021). In a clinical study, a diet with OVT positively affected gut health by increasing the proportion of Akkermansia, which 

promotes host immune regulation and intestinal epithelial cell integrity at the genus level of the gut microbiota (Zhang et al., 

2020). 

Conversely, in a study comparing the cecum microbiota of rats ingesting soy, milk, meat, fish, and egg proteins, along with 

oligosaccharides, Erysipelotrichaceae, Ruminococcaceae, and Lachnospiraceae were the most abundant families in egg 

protein and cellulose-fed rats. Erysipelotrichaceae, Bifidobacteriaceae, and Lachnospiraceae were the most abundant 

families in egg protein and raffinose-fed rats, respectively (Sivixay et al., 2021). Erysipelotrichaceae, which was most 

abundantly increased through the consumption of egg protein and prebiotics, is a characteristic bacterium that is decreased in 

patients with atopic dermatitis and increased in patients with remission of the disease. For example, Erysipelatrichaceae_ 

UCG-003 is a potential probiotic used in a probiotic formula along with other beneficial bacteria and prebiotics (Wang et al., 

2022). These results indicate that the growth of Erysipelotrichaceae, which can have a positive effect on atopic dermatitis, 

can be promoted by egg protein (Sivixay et al., 2021). 

 

Conclusion 

Previous studies have indicated that the consumption of animal products can affect the gut microbiome, with protein being 

a key nutritional characteristic of these products. The ingestion of red or processed meat is associated with alterations in the 

abundance of intestinal Lachnospiraceae, although the mechanism of the changes is uncertain. In contrast, white meat 

protein, such as chicken, is associated with an increased level of Lactobacillus in the gut. Consumption of dairy products 

results in an increase in both Lactobacillus and Bifidobacterium abundances, and moderate intake of casein and whey protein 

is associated with elevated levels of LAB. Egg yolk or egg protein can also impact the growth of Erysipelotrichaceae. 
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Although the available scientific evidence is insufficient to confirm a correlation between animal products or their protein and 

the gut microbiome, current accumulating reports and results point to a relatively consistent direction of future research. 

Taken together, the present review investigates the effects of these animal products and their protein on the composition of 

the gut microbiome to enhance our understanding of the metabolism and function of intestinal microorganisms. 
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