DOI QR코드

DOI QR Code

The effects of Korean Red Ginseng on heme oxygenase-1 with a focus on mitochondrial function in pathophysiologic conditions

  • Chang-Hee Kim (Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Konkuk University School of Medicine) ;
  • Hahn Young Kim (Department of Neurology, Research Institute of Medical Science, Konkuk University School of Medicine) ;
  • Seung-Yeol Nah (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Yoon Kyung Choi (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University)
  • Received : 2022.11.14
  • Accepted : 2023.04.07
  • Published : 2023.09.01

Abstract

Korean Red Ginseng (KRG) plays a key role in heme oxygenase (HO)-1 induction under physical and moderate oxidative stress conditions. The transient and mild induction of HO-1 is beneficial for cell protection, mitochondrial function, regeneration, and intercellular communication. However, chronic HO-1 overexpression is detrimental in severely injured regions. Thus, in a chronic pathological state, diminishing HO-1-mediated ferroptosis is beneficial for a therapeutic approach. The molecular mechanisms by which KRG protects various cell types in the central nervous system have not yet been established, especially in terms of HO-1-mediated mitochondrial functions. Therefore, in this review, we discuss the multiple roles of KRG in the regulation of astrocytic HO-1 under pathophysiological conditions. More specifically, we discuss the role of the KRG-mediated astrocytic HO-1 pathway in regulating mitochondrial functions in acute and chronic neurodegenerative diseases as well as physiological conditions.

Keywords

Acknowledgement

This paper was supported by Konkuk University Premier Research Fund in 2021.

References

  1. Kim M, Mok H, Yeo WS, Ahn JH, Choi YK. Role of ginseng in the neurovascular unit of neuroinflammatory diseases focused on the blood-brain barrier. J Ginseng Res 2021;45(5):599-609. https://doi.org/10.1016/j.jgr.2021.02.003
  2. Prabhakar NR, Semenza GL. Oxygen sensing and homeostasis. Physiology (Bethesda) 2015;30(5):340-8.
  3. Imuta N, Hori O, Kitao Y, Tabata Y, Yoshimoto T, Matsuyama T, Ogawa S. Hypoxia-mediated induction of heme oxygenase type I and carbon monoxide release from astrocytes protects nearby cerebral neurons from hypoxia-mediated apoptosis. Antioxid Redox Signal 2007;9(5):543-52. https://doi.org/10.1089/ars.2006.1519
  4. Dore S, Takahashi M, Ferris CD, Zakhary R, Hester LD, Guastella D, Snyder SH. Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc Natl Acad Sci U S A 1999;96(5):2445-50. https://doi.org/10.1073/pnas.96.5.2445
  5. Barisano G, Montagne A, Kisler K, Schneider JA, Wardlaw JM, Zlokovic BV. Blood-brain barrier link to human cognitive impairment and Alzheimer's Disease. Nat Cardiovasc Res 2022;1(2):108-15. https://doi.org/10.1038/s44161-021-00014-4
  6. Feng T, Yamashita T, Zhai Y, Shang J, Nakano Y, Morihara R, Fukui Y, Hishikawa N, Ohta Y, Abe K. Chronic cerebral hypoperfusion accelerates Alzheimer's disease pathology with the change of mitochondrial fission and fusion proteins expression in a novel mouse model. Brain Res 2018;1696:63-70. https://doi.org/10.1016/j.brainres.2018.06.003
  7. Kim Y, Park J, Choi YK. The role of astrocytes in the central nervous system focused on BK channel and heme oxygenase metabolites: a review. Antioxidants (Basel) 2019;8(5):121.
  8. Choi YK, Kim YM. Beneficial and detrimental roles of heme oxygenase-1 in the neurovascular system. Int J Mol Sci 2022;23(13):7041.
  9. Schipper HM, Song W, Tavitian A, Cressatti M. The sinister face of heme oxygenase-1 in brain aging and disease. Prog Neurobiol 2019;172:40-70. https://doi.org/10.1016/j.pneurobio.2018.06.008
  10. Choi YK, Kim YM. Regulation of endothelial and vascular functions by carbon monoxide via crosstalk with nitric oxide. Front Cardiovasc Med 2021;8:649630.
  11. Choi YK, Kim CK, Lee H, Jeoung D, Ha KS, Kwon YG, Kim KW, Kim YM. Carbon monoxide promotes VEGF expression by increasing HIF-1alpha protein level via two distinct mechanisms, translational activation and stabilization of HIF-1alpha protein. J Biol Chem 2010;285(42):32116-25. https://doi.org/10.1074/jbc.M110.131284
  12. Yang H, Lee SE, Jeong SI, Park CS, Jin YH, Park YS. Up-regulation of heme oxygenase-1 by Korean red ginseng water extract as a cytoprotective effect in human endothelial cells. J Ginseng Res 2011;35(3):352-9. https://doi.org/10.5142/jgr.2011.35.3.352
  13. Park J, Lee M, Kim M, Moon S, Kim S, Kim S, Koh SH, Kim YM, Choi YK. Prophylactic role of Korean Red Ginseng in astrocytic mitochondrial biogenesis through HIF-1alpha. J Ginseng Res 2022;46(3):408-17. https://doi.org/10.1016/j.jgr.2021.07.003
  14. Kim TH, Kim JY, Bae J, Kim YM, Won MH, Ha KS, Kwon YG, Kim YM. Korean Red ginseng prevents endothelial senescence by downregulating the HO-1/NF-kappaB/miRNA-155-5p/eNOS pathway. J Ginseng Res 2021;45(2):344-53. https://doi.org/10.1016/j.jgr.2020.08.002
  15. Sung WN, Kwok HH, Rhee MH, Yue PY, Wong RN. Korean Red Ginseng extract induces angiogenesis through activation of glucocorticoid receptor. J Ginseng Res 2017;41(4):477-86. https://doi.org/10.1016/j.jgr.2016.08.011
  16. Jovanovski E, Peeva V, Sievenpiper JL, Jenkins AL, Desouza L, Rahelic D, Sung MK, Vuksan V. Modulation of endothelial function by Korean red ginseng (Panax ginseng C.A. Meyer) and its components in healthy individuals: a randomized controlled trial. Cardiovasc Ther 2014;32(4):163-9. https://doi.org/10.1111/1755-5922.12077
  17. Choi K, Yoon J, Lim HK, Ryoo S. Korean red ginseng water extract restores impaired endothelial function by inhibiting arginase activity in aged mice. Korean J Phys Pharm 2014;18(2):95-101. https://doi.org/10.4196/kjpp.2014.18.2.95
  18. Bellezza I, Giambanco I, Minelli A, Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res 2018;1865(5):721-33. https://doi.org/10.1016/j.bbamcr.2018.02.010
  19. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 2016;73(17):3221-47. https://doi.org/10.1007/s00018-016-2223-0
  20. Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 2019;23:101107.
  21. Wang B, Cao W, Biswal S, Dore S. Carbon monoxide-activated Nrf2 pathway leads to protection against permanent focal cerebral ischemia. Stroke; J Cereb Circ 2011;42(9):2605-10. https://doi.org/10.1161/STROKEAHA.110.607101
  22. Tudor C, Lerner-Marmarosh N, Engelborghs Y, Gibbs PE, Maines MD. Biliverdin reductase is a transporter of haem into the nucleus and is essential for regulation of HO-1 gene expression by haematin. Biochem J 2008;413(3):405-16. https://doi.org/10.1042/BJ20080018
  23. Moon S, Kim CH, Park J, Kim M, Jeon HS, Kim YM, Choi YK. Induction of BVR-A expression by Korean red ginseng in murine hippocampal astrocytes: role of bilirubin in mitochondrial function via the LKB1-SIRT1-ERRalpha Axis. Antioxidants (Basel) 2022;11(9):1742.
  24. Kim S, Lee M, Choi YK. The role of a neurovascular signaling pathway involving hypoxia-inducible factor and notch in the function of the central nervous system. Biomol Ther (Seoul) 2020;28(1):45-57. https://doi.org/10.4062/biomolther.2019.119
  25. Choi YK, Kim JH, Lee DK, Lee KS, Won MH, Jeoung D, Lee H, Ha KS, Kwon YG, Kim YM. Carbon monoxide potentiation of L-type Ca2+ channel activity increases HIF-1alpha-Independent VEGF expression via an AMPKalpha/SIRT1-mediated PGC-1alpha/ERRalpha Axis. Antioxid Redox Signal 2017;27(1):21-36. https://doi.org/10.1089/ars.2016.6684
  26. Choi YK, Park JH, Yun JA, Cha JH, Kim Y, Won MH, Kim KW, Ha KS, Kwon YG, Kim YM. Heme oxygenase metabolites improve astrocytic mitochondrial function via a Ca2+-dependent HIF-1alpha/ERRalpha circuit. PLoS One 2018;13(8):e0202039.
  27. Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, Cooper M, Laznik D, Chinsomboon J, Rangwala SM, et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 2008;451(7181):1008-12.
  28. Choi YK, Park JH, Baek YY, Won MH, Jeoung D, Lee H, Ha KS, Kwon YG, Kim YM. Carbon monoxide stimulates astrocytic mitochondrial biogenesis via L-type Ca2+ channel-mediated PGC-1alpha/ERRalpha activation. Biochem Biophys Res Commun 2016;479(2):297-304. https://doi.org/10.1016/j.bbrc.2016.09.063
  29. Gurd BJ. Deacetylation of PGC-1alpha by SIRT1: importance for skeletal muscle function and exercise-induced mitochondrial biogenesis. Appl Physiol Nutr Metab 2011;36(5):589-97. https://doi.org/10.1139/h11-070
  30. Canto C, Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 2009;20(2):98-105. https://doi.org/10.1097/MOL.0b013e328328d0a4
  31. Kim M, Kim J, Moon S, Choi BY, Kim S, Jeon HS, Suh SW, Kim YM, Choi YK. Korean red ginseng improves astrocytic mitochondrial function by upregulating HO-1-Mediated AMPKalpha-PGC-1alpha-ERRalpha circuit after traumatic brain injury. Int J Mol Sci 2021;22(23):13081.
  32. Kim M, Moon S, Jeon HS, Kim S, Koh SH, Chang MS, Kim YM, Choi YK. Dual effects of Korean red ginseng on astrocytes and neural stem cells in traumatic brain injury: the HO-1-Tom20 Axis as a putative target for mitochondrial function. Cells 2022;11(5):892.
  33. Ma C, Pi C, Yang Y, Lin L, Shi Y, Li Y, Li Y, He X. Nampt expression decreases age-related senescence in rat bone marrow mesenchymal stem cells by targeting Sirt1. PLoS One 2017;12(1):e0170930.
  34. Lee JH, Jeong SM, Kim JH, Lee BH, Yoon IS, Lee JH, Choi SH, Lee SM, Park YS, Lee JH, et al. Effects of ginsenosides and their metabolites on voltage-dependent Ca(2+) channel subtypes. Mol Cells 2006;21(1):52-62. https://doi.org/10.1016/s1016-8478(23)12902-5
  35. Zhang YF, Fan XJ, Li X, Peng LL, Wang GH, Ke KF, Jiang ZL. Ginsenoside Rg1 protects neurons from hypoxic-ischemic injury possibly by inhibiting Ca2+ influx through NMDA receptors and L-type voltage-dependent Ca2+ channels. Eur J Pharm 2008;586(1-3):90-9. https://doi.org/10.1016/j.ejphar.2007.12.037
  36. Maskey D, Lee JK, Kim HR, Kim HG. Neuroprotective effect of ginseng against alteration of calcium binding proteins immunoreactivity in the mice hippocampus after radiofrequency exposure. Biomed Res Int 2013;2013:812641.
  37. Girouard H, Bonev AD, Hannah RM, Meredith A, Aldrich RW, Nelson MT. Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction. Proc Natl Acad Sci U S A 2010;107(8):3811-6. https://doi.org/10.1073/pnas.0914722107
  38. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D. Ferroptosis: process and function. Cell Death Differ 2016;23(3):369-79. https://doi.org/10.1038/cdd.2015.158
  39. Bao WD, Pang P, Zhou XT, Hu F, Xiong W, Chen K, Wang J, Wang F, Xie D, Hu YZ, et al. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer's disease. Cell Death Differ 2021;28(5):1548-62. https://doi.org/10.1038/s41418-020-00685-9
  40. Poss KD, Tonegawa S. Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci U S A 1997;94(20):10919-24. https://doi.org/10.1073/pnas.94.20.10919
  41. Gutteridge JM. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett 1986;201(2):291-5. https://doi.org/10.1016/0014-5793(86)80626-3
  42. Daglas M, Adlard PA. The involvement of iron in traumatic brain injury and neurodegenerative disease. Front Neurosci 2018;12:981.
  43. Liu JL, Fan YG, Yang ZS, Wang ZY, Guo C. Iron and alzheimer's disease: from pathogenesis to therapeutic implications. Front Neurosci 2018;12:632.
  44. Shan Y, Li J, Zhu A, Kong W, Ying R, Zhu W. Ginsenoside Rg3 ameliorates acute pancreatitis by activating the NRF2/HO1mediated ferroptosis pathway. Int J Mol Med 2022;50(1):89.
  45. Chen QM. Nrf2 for cardiac protection: pharmacological options against oxidative stress. Trends Pharmacol Sci 2021;42(9):729-44. https://doi.org/10.1016/j.tips.2021.06.005
  46. Ma CS, Lv QM, Zhang KR, Tang YB, Zhang YF, Shen Y, Lei HM, Zhu L. NRF2-GPX4/SOD2 axis imparts resistance to EGFR-tyrosine kinase inhibitors in non-small-cell lung cancer cells. Acta Pharmacol Sin 2021;42(4):613-23. https://doi.org/10.1038/s41401-020-0443-1
  47. Choi YK, Maki T, Mandeville ET, Koh SH, Hayakawa K, Arai K, Kim YM, Whalen MJ, Xing C, Wang X, et al. Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nat Med 2016;22(11):1335-41. https://doi.org/10.1038/nm.4188
  48. Bates DO, Harper SJ. Regulation of vascular permeability by vascular endothelial growth factors. Vascul Pharmacol 2002;39(4-5):225-37. https://doi.org/10.1016/S1537-1891(03)00011-9
  49. Sandoval KE, Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 2008;32(2):200-19. https://doi.org/10.1016/j.nbd.2008.08.005
  50. Knowland D, Arac A, Sekiguchi KJ, Hsu M, Lutz SE, Perrino J, Steinberg GK, Barres BA, Nimmerjahn A, Agalliu D. Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron 2014;82(3):603-17. https://doi.org/10.1016/j.neuron.2014.03.003
  51. Desai BS, Monahan AJ, Carvey PM, Hendey B. Blood-brain barrier pathology in Alzheimer's and Parkinson's disease: implications for drug therapy. Cell Transplant 2007;16(3):285-99. https://doi.org/10.3727/000000007783464731
  52. Wang J, Zhang D, Fu X, Yu L, Lu Z, Gao Y, Liu X, Man J, Li S, Li N, et al. Carbon monoxide-releasing molecule-3 protects against ischemic stroke by suppressing neuroinflammation and alleviating blood-brain barrier disruption. J Neuroinflammation 2018;15(1):188.
  53. Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, Ohta K, Kasahara Y, Koizumi S. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest 1999;103(1):129-35. https://doi.org/10.1172/JCI4165
  54. Baranano DE, Wolosker H, Bae BI, Barrow RK, Snyder SH, Ferris CD. A mammalian iron ATPase induced by iron. J Biol Chem 2000;275(20):15166-73. https://doi.org/10.1074/jbc.275.20.15166
  55. Yu X, Song N, Guo X, Jiang H, Zhang H, Xie J. Differences in vulnerability of neurons and astrocytes to heme oxygenase-1 modulation: implications for mitochondrial ferritin. Sci Rep 2016;6:24200.
  56. Ferris CD, Jaffrey SR, Sawa A, Takahashi M, Brady SD, Barrow RK, Tysoe SA, Wolosker H, Baranano DE, Dore S, et al. Haem oxygenase-1 prevents cell death by regulating cellular iron. Nat Cell Biol 1999;1(3):152-7. https://doi.org/10.1038/11072
  57. Kwon MY, Park E, Lee SJ, Chung SW. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget 2015;6(27):24393-403. https://doi.org/10.18632/oncotarget.5162
  58. Chiang SK, Chen SE, Chang LC. A dual role of heme oxygenase-1 in cancer cells. Int J Mol Sci 2018;20(1):39.
  59. Schipper HM. Glial HO-1 expression, iron deposition and oxidative stress in neurodegenerative diseases. Neurotox Res 1999;1(1):57-70. https://doi.org/10.1007/BF03033339
  60. Schipper HM, Song W, Tavitian A, Cressatti M. The sinister face of heme oxygenase-1 in brain aging and disease. Prog Neurobiol 2019;172:40-70. https://doi.org/10.1016/j.pneurobio.2018.06.008
  61. Ayton S, Wang Y, Diouf I, Schneider JA, Brockman J, Morris MC, Bush AI. Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology. Mol Psychiatr 2020;25(11):2932-41. https://doi.org/10.1038/s41380-019-0375-7
  62. Kim KH, Lee D, Lee HL, Kim CE, Jung K, Kang KS. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J Ginseng Res 2018;42(3):239-47. https://doi.org/10.1016/j.jgr.2017.03.011
  63. Razgonova MP, Veselov VV, Zakharenko AM, Golokhvast KS, Nosyrev AE, Cravotto G, Tsatsakis A, Spandidos DA. Panax ginseng components and the pathogenesis of Alzheimer's disease (Review). Mol Med Rep 2019;19(4):2975-98. https://doi.org/10.3892/mmr.2019.9972
  64. Nitti M, Piras S, Brondolo L, Marinari UM, Pronzato MA, Furfaro AL. Heme oxygenase 1 in the nervous system: does it favor neuronal cell survival or induce neurodegeneration? Int J Mol Sci 2018;19(8):2260.
  65. Campello L, Singh N, Advani J, Mondal AK, Corso-Diaz X, Swaroop A. Aging of the retina: molecular and metabolic turbulences and potential interventions. Annu Rev Vis Sci 2021;7:633-64. https://doi.org/10.1146/annurev-vision-100419-114940
  66. Anderson MA, Ao Y, Sofroniew MV. Heterogeneity of reactive astrocytes. Neurosci Lett 2014;565:23-9. https://doi.org/10.1016/j.neulet.2013.12.030
  67. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA. Genomic analysis of reactive astrogliosis. J Neurosci 2012;32(18):6391-410. https://doi.org/10.1523/JNEUROSCI.6221-11.2012
  68. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017;541(7638):481-7. https://doi.org/10.1038/nature21029
  69. Eroglu C, Barres BA. Regulation of synaptic connectivity by glia. Nature 2010;468(7321):223-31.
  70. Lee H, Choi YK. Regenerative effects of heme oxygenase metabolites on neuroinflammatory diseases. Int J Mol Sci 2018;20(1):78.
  71. Chun H, Lee CJ. Reactive astrocytes in Alzheimer's disease: a double-edged sword. Neurosci Res 2018;126:44-52. https://doi.org/10.1016/j.neures.2017.11.012
  72. Moon S, Chang MS, Koh SH, Choi YK. Repair mechanisms of the neurovascular unit after ischemic stroke with a focus on VEGF. Int J Mol Sci 2021;22(16):8543.