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Abstract
Toxoplasma gondii is an intracellular parasitic organism affecting all warm-blooded ver-
tebrates. Due to the unavailability of commercialized human T. gondii vaccine, many 
studies have been reported investigating the protective efficacy of pre-clinical T. gondii 
vaccines expressing diverse antigens. Careful antigen selection and implementing multi-
farious immunization strategies could enhance protection against toxoplasmosis in ani-
mal models. Although none of the available vaccines could remove the tissue-dwelling 
parasites from the host organism, findings from these pre-clinical toxoplasmosis vaccine 
studies highlighted their developmental potential and provided insights into rational vac-
cine design. We herein explored the progress of T. gondii vaccine development using 
DNA, protein subunit, and virus-like particle vaccine platforms. Specifically, we summa-
rized the findings from the pre-clinical toxoplasmosis vaccine studies involving T. gondii 
challenge infection in mice published in the past 5 years.
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Introduction

Parasitic diseases are frequently neglected despite their importance and impact on human 
life. Toxoplasmosis, caused by the Apicomplexan parasite, Toxoplasma gondii, is a neglect-
ed disease of global importance. Global statistics demonstrate that T. gondii affects more 
than a third of the world’s population [1], although seroprevalence can vary across regions 
[2]. These intracellular parasites are generally asymptomatic in healthy adults but can have 
fatal consequences in pregnant women and immunocompromised adults. For instance, 
transmitting T. gondii from mother to fetus can result in several congenital disabilities or 
stillbirths [3]. Administering drugs, such as pyrimethamine and sulfadiazine, can limit T. 
gondii infection in patients. However, these drugs are only effective against tachyzoites and 
cannot exert their full effect against the tissue-dwelling bradyzoites [4].
  Furthermore, drug-resistant T. gondii strains continue to emerge globally, resulting in 
treatment failures. Although the underlying mechanisms remain largely elusive, mutation 
in the dihydropteroate synthase (dhps) gene could contribute to drug resistance against sul-
fonamides in T. gondii clinical isolates [5,6]. The clinical drug-resistant isolates, TgCTBr4 
and TgCTBr17, acquired from newborn patients in Brazil, were reported to be less suscep-
tible to pyrimethamine and sulfadiazine treatments [7].
  Vaccines are highly desirable prophylaxis strategies that limit the dissemination of para-
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sites. Efforts to develop an efficacious vaccine against toxoplasmosis have been ongoing for 
decades. To date, only one toxoplasmosis vaccine is commercially available. Toxovax is a 
live-attenuated T. gondii S48 strain that cannot be used in humans as safety profiles have 
not been clinically evaluated [8]. The exact reasons for prioritizing veterinary toxoplasmo-
sis vaccine development over their clinical counterpart remains unknown, but congenital 
toxoplasmosis in ewes exhibited a considerable problem in the agricultural sector. Addi-
tionally, attaining regulatory approval is less stringent for veterinary vaccines than clinical 
ones [9].
  Despite massive advances in vaccinology, an effective human vaccine for toxoplasmosis 
remains unavailable. After establishing toxoplasmosis as a significant foodborne infectious 
disease in the western hemisphere [10], it was not perceived as a threat to the general pub-
lic. Clinical toxoplasmosis vaccine development has progressed rather slowly. Therefore, 
vaccine development remains a top priority. Herein, we briefly summarized some antigen 
components of T. gondii used in several vaccine platforms and highlighted advances in T. 
gondii vaccine development. We addressed several advantages and pitfalls of each platform 
that either promote or impede their development.

What is a vaccine and how do they work?

Vaccines are immune response-inducing biological products that confer protection against 
a specific infectious disease by exposing pathogenic agents to the host. The vaccine must 
express one or more antigens derived from the disease-causing pathogen [11]. The immu-
nity induction mechanism is similar for most vaccines, irrespective of the target pathogen 
or platform. After entry of vaccine antigen, they are transported to compartmentalized 
secondary lymphoid organs, such as lymph nodes. The antigens activate B cells with specif-
ic receptors that recognize these foreign antigens. Once activated, the B cells present the 
processed vaccine antigen to the T cells and induce cellular signals that stimulate their pro-
liferation and differentiation. The activated B cells produce short-lived plasma cells that se-
crete large quantities of antibodies. They induce germinal center responses, ensuring the 
production of memory B and long-lived plasma cells [12]. Simultaneously, antigen-pre-
senting cells, such as dendritic cells, can cross-present the vaccine antigens to the T cells, 
signaling their differentiation into effector and memory T cells. Combined, these intricate 
processes contribute to the well-being of vaccinees by creating an immunological memory 
that confers rapid and robust protection against the target pathogen.

DNA vaccines

Molecular properties of DNA vaccines
Using nucleic acids for eliciting immune responses in hosts was first reported in the early 
1990s by Tang et al. [13]. Since its discovery, DNA vaccines rapidly emerged into the scien-
tific limelight and were actively researched. Structurally, DNA vaccines are composed of a 
bacteria-derived plasmid encoding a specific antigen of interest whose expression is con-
trolled by a strong viral promoter for optimal gene expression in vivo, such as the cytomeg-
alovirus (CMV) or the simian virus 40 (SV40). The precise mechanism underlying how 
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these DNA vaccines induce cellular and humoral immune responses despite their low ex-
pression levels in hosts remains largely unknown. However, 3 possible mechanisms describe 
how these vaccines may facilitate antigen presentation [14]. First, upon delivery into hosts 
by the parenteral route of immunization, the plasmid DNA encoding the antigen is inter-
nalized by somatic cells in the vicinity, such as myocytes or keratinocytes. The antigens are 
transcribed within these cells and eventually presented to CD8+ T cells via the membrane 
histocompatibility complex (MHC) class I. Second, the antigen-presenting cells (APCs), 
such as dendritic cells, are recruited to the injection site. These cells become transfected by 
the plasmid DNA and present the expressed antigen of interest via MHC I and II. Last, the 
plasmid-infected somatocytes are phagocytosed by APCs to enable cross-priming and an-
tigen presentation to CD4+ and CD8+ T cell subsets.
  There are several factors favoring DNA vaccines over traditional vaccines. The produc-
tion costs for DNA vaccines are relatively lower than traditional vaccines. Also, because in-
fectious pathogens are not being introduced into the host, this vaccination approach is safe 
for use [15]. While DNA vaccines appear promising, there are safety concerns even if an 
infectious pathogen is not used for immunization. For instance, the possibility of antigen-
encoding plasmid DNA integration into the host chromosome is one such consequence 
[16], though later studies revealed that the probability of genetic integration is extremely 
low [17]. Furthermore, DNA vaccines are weakly immunogenic. Specifically, suboptimal 
vaccine efficacies were reported from DNA vaccine studies conducted in non-human pri-
mates, as indicated by the low levels of antibody responses [15]. Based on these profiles, 
several DNA vaccines against various infectious diseases have undergone clinical evalua-
tions but a clinical DNA vaccine trial for toxoplasmosis remains unreported.

Current progress in T. gondii DNA vaccine development
DNA vaccines are the most prevalent vaccine platforms being investigated throughout the  
world. The sheer amount of DNA vaccine-based publications skyrocketed in the early 2000s, 
and its popularity has remained unchanged [18]. This research trend is no exception for T. 
gondii vaccines, as most studies revolve around DNA vaccines. Despite the extensive re-
search, most DNA vaccine results were suboptimal, while a few studies reported exception-
al findings. Different T. gondii antigens conferred differing degrees of protection in mice. 
For example, DNA vaccines expressing the dense granule (GRA) 39 antigen prolonged the 
survival of Kunming mice by 20 days, but none could survive the challenge infection with 
the RH strain. Cyst burden reduction upon challenge infection with 10 cysts of PRU strain 
was suboptimal, as not even 50% cyst burden reduction was observed [19]. Contrastingly, 
GRA24-expressing DNA vaccines prolonged the survival of RH-infected BALB/c mice up 
to 30 days post-infection [20]. This was also the case with T. gondii Myc regulation 1 (MYR1)- 
expressing vaccine, which significantly prolonged the survival of immunized mice against 
RH challenge infection [21].
  Several strategies improved the protective efficacy but were only marginally effective. Ad-
juvanting DNA vaccines had a minor effect on the vaccine’s protective efficacy. Although 
supplementing the T. gondii GRA7 DNA vaccine with the calcium phosphate nanoparticle 
adjuvant prolonged the survival of immunized mice, it was only 2 days longer than the un-
adjuvanted control group [22]. Conflicting results were observed from multi-antigenic vac-
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cines. Combined immunization with DNA vaccines expressing the microneme proteins 
(MIC) 5 and 16 as antigens reduced the brain cyst burden by half in mice challenged with 
the PRU strain but, as with other vaccines, failed to confer prolonged protection against the 
RH strain [23]. On the contrary, multi-antigenic DNA vaccines expressing the SAG2, rhop-
try protein (ROP) 9, and MIC3 ensured that immunized mice survived the challenge in-
fection with the highly virulent RH strain regardless of the infection doses [24]. Protection 
induced by these DNA vaccines was tabulated and briefly described (Table 1).

Protein subunit vaccines

Molecular properties of protein subunit vaccines
Protein subunit vaccines use a small fraction of a pathogenic agent’s antigenic component 
to elicit immune responses in vaccinees. Like the traditional inactivated whole-organism 
vaccines, protein subunit vaccines are incapable of replicating in hosts and are safe but pos-
sess low immunogenicity. Therefore, protein subunit vaccines often require multiple im-
munization doses or adjuvant incorporation to achieve long-lasting immunity [25]. With 
the introduction of recombinant DNA technology and advancements in molecular biology, 
mass-producing foreign genes of interest in various expression systems has become feasi-
ble. Bacterial expression systems are frequently used to produce large quantities of protein 
of interest at a low cost. However, given the nature of prokaryotic organisms, proteins are 
misfolded, and post-translational modifications (PTMs) observed in mammals are lacking 
[26]. The need for downstream purification for endotoxin removal and processing of ex-
pressed antigens further hampers this. Like the bacterial expression system, yeast and in-
sect cells can rapidly produce significant amounts of proteins of interest. While PTMs oc-
cur in these organisms, glycosylation patterns are not identical to those observed in mam-
malian cells [27]. Based on PTM, mammalian cells would be ideal for antigenic protein 
production. However, improvements are needed as mammalian cell-derived antigen yields 
are relatively lower than antigens produced in the aforementioned expression systems.

Current progress in T. gondii recombinant protein subunit vaccine development
Like DNA vaccines, much progress has been made using recombinant subunit vaccines. 
Subunit protein vaccines are safe, but their immunogenicity pales in comparison to other 

Table 1. Protective efficacy of DNA vaccines expressing various T. gondii antigens

Antigen Mouse strain Challenged  
T. gondii strain

Survival rate  
(duration)a Reference

GRA24 Mouse (BALB/c) Type I: RH 0% (32 days) [20]
MYR1 0% (36 days) [21]
MIC3, ROP9, SAG2 > 30% [24]
MIC5, MIC16 Mouse (Kunming) Type I: RH

Type II: PRU
0% (26 days)

NDb
[23]

GRA39 0% (20 days)
NDb

[19]

aFrom challenge infection to all fatal.
bNot determined.
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vaccine platforms [28]. While some protein-based T. gondii vaccines are protective, others 
failed to elicit desirable protection. The latter was predominantly observed in studies that 
utilized ubiquitous eukaryotic proteins as antigens. Vaccines expressing the T. gondii aspar-
tic protease 3 (ASP3) prolonged the survival duration by 11 days against RH challenge in-
fection [29]. T. gondii peroxiredoxin 1 (PRX1) vaccine failed to confer complete protection 
against the moderately virulent type II PLK strain [30]. However, as with DNA vaccines, 
conflicting protection results were observed from subunit vaccines (Table 2). Cocktail sub-
unit vaccines conferred protection against types I and II T. gondii lineages. Intramuscular 
immunization with subunit proteins T. gondii macrophage migration inhibitory factor, cal-
cium-dependent protein kinase 3, and the 14-3-3 protein resulted in complete protection 
against RH tachyzoite and PRU strains [31]. Given this circumstance, more research on 
improving these vaccines’ protective efficacy is required.

Virus-like Particle (VLP) vaccines

Molecular properties of VLP vaccines
Although VLPs appear similar to protein subunit vaccines, they are not necessarily the 
same and should be categorized differently. VLPs are highly immunogenic self-assembled 
particles that mimic the structural aspects of native virions. However, these particles are in-
herently safe due to the lack of genetic material. Molecular and structural factors that con-
tribute to the high immunogenicity of VLP-based vaccines have been described in detail 
[32], and as such, these aspects will be briefly described. In VLPs, antigens of interest are 
repetitively presented in a dense array which is critical to mounting efficient immune re-
sponses against the target antigen [33,34].
  Furthermore, because the size of VLPs is less than 200 nm, they are rapidly trafficked 
into the lymph nodes [35]. The surface charge is another structural property of VLPs that 
improves immunogenicity compared to protein subunit vaccines. For example, particle-
based vaccines possess charged surfaces that enhance their interaction with professional 
APCs, which may not be accurate for solubilized antigens [36]. Nonetheless, there are limi-
tations to VLP vaccine technology, such as production costs. Like protein subunit vaccines, 
PTM must be considered during VLP vaccine assembly.

Current progress in T. gondii VLP vaccine development
To date, all VLP-based vaccine studies reported are chimeric, expressing parasitic antigens 

Table 2. Efficacy of T. gondii vaccines based on protein subunit

Antigen Mouse strain Challenged  
T. gondii strain

Survival rate  
(duration)a Reference

ASP3 Mouse (BALB/c) Type I: RH 0% (18 days) [29]
PRX1 Type II: PLK < 70% [30]
MIF, CDPK3, 14-3-3 Type I: RH

Type II: PRU
90%
NDb

[31]

aFrom challenge infection to all fatal.
bNot determined.
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on the surface of influenza virus matrix protein 1. Surprisingly, VLP immunization elicited 
considerable protection against virulent type I and moderately virulent type II strains in 
mice, such as those expressing MIC8 [37] and ROP13 [38] as surface antigens (Table 3). In 
a comparative study, VLPs expressing ROP18 antigens were more efficacious than those 
expressing ROP4 [39]. Similar to DNA and subunit vaccines, a multi-antigenic vaccine ap-
proach enhanced the protective efficacy of VLP vaccines. While ROP4 and ROP13 VLPs 
were protective and ensured 100% survival [40], VLPs co-expressing ROP4 and ROP13 
antigens led to brain cyst burden reduction compared to VLPs expressing either antigen 
alone in BALB/c mice [41]. VLPs co-expressing MIC8 and ROP18 reduced the parasite 
burden following challenge infection with the T. gondii GT1 strain [42]. Further supplement-
ing this vaccine with the inner membrane complex subcompartment protein 3 (IMC) con-
ferred partial protection against the virulent GT1 strain but elicited complete protection 
against ME49 [43,44].
  A research group demonstrated that chimeric hepatitis B virus-based VLPs expressing 
CD8 and CD4 T cell epitopes prolonged the survival of immunized mice upon challenge 
infection with T. gondii RH strain [45]. The impact of immunization regimen and adjuvant 
use was also evaluated. Herein, increasing the number of immunizations and supplement-
ing adjuvants did not decrease brain cyst size but significantly reduced the cyst burden in 
ME49-infected mice [46,47]. More research on these T. gondii VLP vaccines is required, 
especially against the highly virulent strains, which are lethal even at small infection doses. 
However, the outlook for this vaccine platform appears promising. Furthermore, as all VLP-
based vaccine studies were conducted in mice, evaluating their protective efficacy in high-
er-order eukaryotic organisms should be considered.

Conclusion

In summary, additional studies are required to improve the protective efficacy of T. gondii 
vaccines; however, the general outlook for their development seems promising. Numerous 
studies have proposed improving vaccine efficacy by optimizing immunization strategies, 
adjuvant usage, or identifying novel candidate antigens. Recent findings have demonstrat-
ed that pre-clinical toxoplasmosis vaccines can elicit cellular and humoral immune respons-

Table 3. Protective efficacy of T. gondii vaccines based on virus-like particle

Antigen Mouse strain Challenged  
T. gondii strain

Survival rate  
(duration)a Reference

MIC8 Mouse (BALB/c) Type I: RH 100% [37]
ROP13 Type II: ME49 [38]
IMC, ROP18, MIC8 [47]
ROP18, MIC8 Type I: GT1

Type II: ME49
0% (17 days)

NDb
[42]

IMC, ROP18, MIC8 Type I: GT1 20% [43]
B and T cell epitopes Type I: RH

Type II: ME49
0% (20 days)

NDb
[45]

aFrom challenge infection to all fatal.
bNot determined.
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es in immunized mice, irrespective of the vaccine platform. Much of the T. gondii vaccine 
studies have focused on intermediate hosts, and vaccines targeting definitive hosts, includ-
ing felines, are understudied. Furthermore, given the parasite’s complex life cycle, antigens 
spanning multiple stages should be carefully evaluated based on their immunogenicity. Fu-
ture investigations could attempt to address these shortcomings and employ novel strate-
gies for vaccine development.
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