DOI QR코드

DOI QR Code

The Contribution of Pre-Existing Structures during the Structural Inversion in Cretaceous Sedimentary Rocks on Geoje Island, SE Korea

  • Francois Hategekimana (Gelogical Structures and Geohazard Research Lab, Major of Environmental Geosciences, Pukyong National University) ;
  • Mohammed S. M. Adam (Gelogical Structures and Geohazard Research Lab, Major of Environmental Geosciences, Pukyong National University) ;
  • Young-Seog Kim (Gelogical Structures and Geohazard Research Lab, Major of Environmental Geosciences, Pukyong National University)
  • 투고 : 2023.01.13
  • 심사 : 2023.07.19
  • 발행 : 2023.08.31

초록

Structural inversion refers to the reverse reactivation of extensional faults that influence basin shortening accommodated by contractional faults or folds. On the Korean peninsula, Miocene inversion structures have been found, but the Cretaceous rocks on Geoje Island may have undergone inversion as early as the Upper Cretaceous. To evaluate the structural inversion on Geoje Island, located on the eastern side of South Korea, and to determine the effects of preexisting weakness zones, field-based geometric and kinematic analyses of faults were performed. The lithology of Geoje Island is dominated by hornfelsified shale, siltstone, and sandstone in the Upper-Cretaceous Seongpori formation. NE and NW-oblique normal faults, conjugate strike-slip (NW-sinistral transpressional and E-W-dextral transtensional) faults, and NE-dextral transpressional faults are the most prominent structural features in Geoje Island. Structural inversion on Geoje Island was evidenced by the sinistral and dextral transpressional reactivation of the NW and NE-trending oblique normal faults respectively, under WNW-ESE/NW-SE compression, which was the orientation of the compressive stress during the Late Cretaceous to Early Cenozoic.

키워드

과제정보

This research was supported by a grant (2022-MOIS62-001 (RS-2022-ND640011)) of National Disaster Risk Analysis and Management Technology in Earthquake funded by Ministry of Interior and Safety (MOIS, Korea).

참고문헌

  1. Allen, M. B., Alsop, G. I., & Zhemchuzhnikov, V. G. (2001). Dome and basin refolding and transpressive inversion along the Karatau Fault System, southern Kazakstan. Journal of the Geological Society, 158, 83-95. https://doi.org/10.1144/jgs.158.1.83.
  2. Anderson, E. M.: The dynamics of faulting, Transactions of the Edinburgh Geol. Soc., 8, 387-402, 1905. https://doi.org/10.1144/transed.8.3.387
  3. Bezerra, F. H. R., de Castro, D. L., Maia, R. P., Sousa, M. O. L., Moura Lima, E. M., Rossetti, D. F., … Nogueira, F. C. C. (2020). Post-rift stress field inversion in the Potiguar Basin, Brazil - Implications for petroleum systems and evolution of the equatorial margin of South America. Marine and Petroleum Geology, 111, 88-104. https://doi.org/10.1016/j.marpetgeo.2019.08.001.
  4. Blair, T.C., Bilodeau, W.L., 1988. Development of tectonic cyclothems in rift, pull-apart, and foreland basins: sedimentary response to episodic tectonism. Geology 16 (6), 517-520. https://doi.org/10.1130/0091-7613(1988)016<0517:DOTCIR>2.3.CO;2
  5. Bonini, M., Sani, F., & Antonielli, B. (2012). Basin inversion and contractional reactivation of inherited normal faults: A review based on previous and new experimental models. Tectonophysics, 522-523, 55-88. https://doi.org/10.1016/j.tecto.2011.11.014.
  6. Buchanan, J. G., & Buchanan, P. G. (Eds.) (1995). Basin inversion (p. 88). London, UK: Geological Society Special Publication.
  7. Buchanan, P. G., & McClay, K. R. (1991). Sandbox experiments of inverted listric and planar fault systems. Tectonophysics, 188, 97-115. https://doi.org/10.1016/0040-1951(91)90317-L.
  8. Buiter, S. J. H., & Pfiffner, O. A. (2003). Numerical models of the inversion of half-graben basins. Tectonics, 22, 1057. https://doi. org/10.1029/2002TC001417.
  9. Buiter, S. J. H., Pfiffner, O. A., & Beaumont, C. (2009). Inversion of extensional sedimentary basins: A numerical evaluation of the localisation of shortening. Earth and Planetary Science Letters, 288, 492-504. https://doi.org/10.1016/j.epsl.2009.10.011.
  10. Brun, J. P., & Nalpas, T. (1996). Graben inversion in nature and experiments. Tectonics, 15, 677-687. https://doi.org/10.1029/95TC03853.
  11. Butler, R.W.H., Holdsworth, R.E., Lloyd, G.E., 1997. The role of basement reactivation in continental deformation. Journal of the Geological Society London 154(1), 69-71. https://doi.org/10.1144/gsjgs.154.1.0069
  12. Brewer, J.A., Smythe, D.K., 1984. Moist and the continuity of crustal reflector geometry along the Caledonian-Appalachian orogen. Journal of the Geological Society 141, 105-120. https://doi.org/10.1144/gsjgs.141.1.0105
  13. Brun, J. P., & Nalpas, T. (1996). Graben inversion in nature and experiments. Tectonics, 15, 677-687. https://doi.org/10.1029/95TC03853.
  14. Cartwright, J.A., Bouroullec, R., James, D., Johnson, H.D., 1998. Polycyclic motion history of some Gulf Coast growth faults from high-resolution displacement analysis. Geology, 26(9), 819-822. https://doi.org/10.1130/0091-7613(1998)026<0819:PMHOSG>2.3.CO;2
  15. Cashman, P.H. & Ellis, M.A. 1994. Fault interaction may generate multiple slip vectors on a single fault surface. Geology, 22, 1123-1126. https://doi.org/10.1130/0091-7613(1994)022<1123:FIMGMS>2.3.CO;2
  16. Chang, K.H., 1975. Cretaceous stratigraphy of southeast Korea. Geological Society of Korea, 11(1), pp. 1-23.
  17. Chang K. H. 1977. Late Mesozoic stratigraphy, sedimentation and tectonics of southeastern Korea. Journal of the Geological Society of Korea 13, 76-90.
  18. Cheon, Y., Cho, H., Ha, S., Kang, H.C., Kim, J.S. and Son, M., 2019. Tectonically controlled multiple stages of deformation along the Yangsan Fault Zone, SE Korea, since Late Cretaceous. Journal of Asian Earth Sciences, 170, pp. 188-207. https://doi.org/10.1016/j.jseaes.2018.11.003
  19. Cheon, Y., Ha, S., Lee, S. and Son, M., 2020. Tectonic evolution of the Cretaceous Gyeongsang Back-arc Basin, SE Korea: Transition from sinistral transtension to strike-slip kinematics. Gondwana Research, 83, pp. 16-35. https://doi.org/10.1016/j.gr.2020.01.012
  20. Choi, H.I., 1986. Sedimentation and evolution of the Cretaceous Gyeongsang Basin, southeastern Korea. Journal of the Geological Society, 143(1), pp. 29-40. https://doi.org/10.1144/gsjgs.143.1.0029
  21. Choi, J.H., Yang, S.J., Han, S.R. and Kim, Y.S., 2015. Fault zone evolution during Cenozoic tectonic inversion in SE Korea. Journal of Asian Earth Sciences, 98, pp. 167-177. https://doi.org/10.1016/j.jseaes.2014.11.009
  22. Chough, S. K., Kwon, S. T., Ree, J. H., and Choi, D. K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: A review and new view: Earth Science Review, v. 52, p. 175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  23. Chough, S.K. and Sohn, Y.K., 2010. Tectonic and sedimentary evolution of a Cretaceous continental arcbackarc system in the Korean peninsula: new view. Earth-Science Reviews, 101(3-4), pp.225-249. https://doi.org/10.1016/j.earscirev.2010.05.004
  24. Chun S. S. & Chough S. K. 1992. Tectonic history of Cretaceous sedimentary basins in the southwestern Korean Peninsula and Yellow Sea. In Chough S. K. (ed.) Sedimentary Basins in the Korean Peninsula and Adjacent Seas, Korean Sedimentology Research Group, Special Publication, pp. 60-76.
  25. Cunningham, W. D., & Mann, P. (Eds.) (2007). Tectonics of strike-slip restraining and releasing bends: London. Geological Society, London, Special Publications, 290, 482.
  26. Daly, M. C., Chorowicz, J., and Fairhead, J. D.: Rift basin evolution in Africa: the influence of reactivated steep basement shear zones, Geol. Soc. Lond. Spec. Publ., 44, 309, https://doi.org/10.1144/GSL.SP.1989.044.01.17, 1989.
  27. Davis, G.H. 1984. Structural Geology of Rocks and Regions. Wiley, New York, 270 pp.
  28. Dennis, J. G. 1987. Structural Geology, an Introduction. Brown, Iowa, 342 pp.
  29. Enfield, M., Coward, M., 1987. The structure of the West Orkney Basin, northern Scotland. Journal of the Geological Society of London 144, 871-884. https://doi.org/10.1144/gsjgs.144.6.0871
  30. Ferrill, D.A., Morris, A.P., 2008. Fault zone deformation controlled by carbonate mechanical stratigraphy, Balcones fault system. Tex. AAPG Bull. 92(3), 359-380. https://doi.org/10.1306/10290707066
  31. Fischer, M.P., Woodward, N.B., Mitchell, M.M., 1992. The kinematics of break-thrust folds. Journal of Structural Geology 14, 451-460. https://doi.org/10.1016/0191-8141(92)90105-6
  32. Francois Hategekimana, Young-Seog Kim. (2021). Brittle Deformation History Based on the Analyses of Dikes and Faults within Sedimentary Rocks on Geoje Island, SE Korea. The Journal of Engineering Geology, 31(3), 239-255. doi:10.9720/kseg.2021.3.239.
  33. Garcia, X., Julia, J., Nemocon, A. M., & Neukirch, M. (2019). Lithospheric thinning under the Araripe Basin (NE Brazil) from a long-period magnetotelluric survey: Constraints for tectonic inversion. Gondwana Research, 68, 174-184. https://doi. org/10.1016/j.gr.2018.11.013.
  34. Groshong RH Jr (1988) Low-temperature deformation mechanisms and their interpretation. Geological Society of America Bulletin 100:1329-1360. https://doi.org/10.1130/0016-7606(1988)100<1329:LTDMAT>2.3.CO;2
  35. Hall, R., 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20(4), pp.353-431. https://doi.org/10.1016/S1367-9120(01)00069-4
  36. Harding, T. P. (1985). Seismic characteristics and identification of negative flower structures, positive flower structures, and positive structural inversion. AAPG Bulletin, 69, 585-600.
  37. Hardy, S., Ford, M., 1997. Numerical modeling of trishear fault propagation folding. Tectonics 16, 841-854. https://doi.org/10.1029/97TC01171
  38. Holdsworth, R. E., Butler, C. A., & Roberts, A. M. (1997). The recognition of reactivation during continental deformation. Journal of the Geological Society, 154(1), 73-78. https://doi.org/10.1144/gsjgs.154.1.0073
  39. Holdsworth, R. E., Strachan, R. A., & Dewey, J. F. (Eds.) (1998). Continental transpressional and transtensional tectonics. London, Special Publication, 135, 360.
  40. Ismat, Z., 2015. What can the dihedral angle of conjugate-faults tell us? Jounral of Structral Geology, 73: 97-113. https://doi.org/10.1016/j.jsg.2015.02.008
  41. Kelly, P.G., Peacock, D.C.P., Sanderson, D.J., McGurk, A.C., 1999. Selective reverse reactivation of normal faults, and deformation around reverse-reactivated faults in the Mesozoic of the Somerset coast. Journal of Structural Geology 21(5), 493-509. https://doi.org/10.1016/S0191-8141(99)00041-3
  42. Kim, H.G., Song, C.W., Kim, J.S., Son, M. and Kim, I.S., 2008. Tertiary geological structures and deformation history of the southern Tsushima Island, Japan. Journal of the Geological Society of Korea, 44(2), pp. 175-198.
  43. Kim, H. -M., M. -M. Chang, F. W., & Kim, Y. -H., 2014, A new ichthyodectiform (Pisces, Teleostei) from the Lower Cretaceous. Cretaceous Research, 117-130.
  44. Kim, J. S., Kim, K. K., Jwa, Y. J., & Son, M. (2012a). Cretaceous to early Tertiary granites and magma mixing in South Korea: Their spatio-temporal variations and tectonic implications (multiple slab window model). The Journal of the Petrological Society of Korea, 21(2), 203-216. https://doi.org/10.7854/JPSK.2012.21.2.203
  45. Kim S. B., Chun S. S. & Chough S. K. 1997. Discussion on structural development and stratigraphy of the Kyokpo pull-apart basin, South Korea and tectonic implications for inverted extensional basins. Journal of the Geological Society of London 154, 369-72. https://doi.org/10.1144/gsjgs.154.2.0369
  46. Kim, S. W., Kwon, S., & Ryu, I. C. (2009). Geochronological constraints on multiple deformations of the Honam Shear Zone, South Korea and its tectonic implication. Gondwana Research, 16(1), 82-89. https://doi.org/10.1016/j.gr.2008.12.004
  47. Kim, S. W., Kwon, S., Ryu, I. C., Jeong, Y. J., Choi, S. J., Kee, W. S., ... & Park, D. W. (2012b). Characteristics of the Early Cretaceous igneous activity in the Korean Peninsula and tectonic implications. The Journal of Geology, 120(6), 625-646.
  48. Kim, Y.-S., Andrews, J.R., Sanderson, D.J., 2001. Reactivated strike-slip faults: examples from north Cornwall, UK. Tectonophysics, 340(3-4), 173-194. https://doi.org/10.1016/S0040-1951(01)00146-9
  49. Kim W.S., Kwon S., Yi, K., & Santosh, M. (2013). Arc magmatism in the Yeongnam massif, Korean Peninsula: Imprints of Columbia and Rodinia supercontinents. Gondwana Research, 1009-1027.
  50. Kinoshita O., 1995, Migration of igneous activities related to ridge subduction in Southwest Japan and East Asia continental margins from the Mesozoic to the Paleogene Period. Tectonophysics, 245, 25-35. https://doi.org/10.1016/0040-1951(94)00211-Q
  51. Lee, B. J., and J. H. Hwang, 1997, Relationship between the Kaum fault and the Yangsan fault at the northeastern part of the Cretaceous Kyongsang Basin, Korea (in Korean with English abstract), Journal of Geological Society of Korea, 33(1), 1-8.
  52. Lee, B. J., and Kim, B. C., 2003, Geology and structural development of the Cretaceous Gongju Basin, Korea: Journal of the Geological Society of Korea. v. 39, no. 2, p. 161-170 (in Korean with English abstract).
  53. Lee, D.W., 1999.Strike-slip fault tectonics and basin formation during the cretaceous in the Korean Peninsula. Island Arc 8, 218-231. https://doi.org/10.1046/j.1440-1738.1999.00233.x
  54. Lee, M.W., 1992. The cretaceous volcanic activities and petrology in Kyonggi Massif-on the Kapcheon, Eumsung and Kongju Basin. J. Geol. Soc. Korea., 28, pp. 314-333.
  55. Lee Y. I. & Lim D. H., 2008, Sandstone diagenesis of the Lower Cretaceous Sindong Group, Gyeongsang Basin, southeastern Korea: Implications for compositional and paleo-environmental controls. Island Arc 17, 152-71. https://doi.org/10.1111/j.1440-1738.2007.00608.x
  56. Le Guerroue, E. and Cobbold, P.R., 2006. Influence of erosion and sedimentation on strike-slip fault systems: insights from analogue models. Journal of Structural Geology, 28(3), pp. 421-430. https://doi.org/10.1016/j.jsg.2005.11.007
  57. Lisle, R.J., Srivastava, D.C., 2004. Test of the frictional reactivation theory for faults and validity of fault-slip analysis. Geology 32(7), 569-572. https://doi.org/10.1130/G20408.1
  58. Marques, F. O., Nogueira, F. C. C., Bezerra, F. H. R., & de Castro, D. L. (2014). The Araripe Basin in NE Brazil: An intracontinental graben inverted to a high-standing horst. Tectonophysics, 630, 251-264. https://doi.org/10.1016/j.tecto.2014.05.029.
  59. McClay, K. R. (1989). Analogue models of inversion tectonics. In M. A. Cooper, & G. D. Williams (Eds.), Inversion tectonics, Vol. 44 (pp. 41-59). London, UK: Geological Society, London, Special Publications.
  60. McClay, K. R., & Buchanan, P. G. (1992). Thrust faults in inverted extensional basins. In K. R. McClay (Ed.), Thrust tectonics (pp. 93-104). Dordrecht, The Netherlands: Springer. https://doi.org/10.1007/978-94-011-3066-0.
  61. Mitra, S., & Paul, D. (2011). Structural geometry and evolution of releasing and restraining bends: Insights from laser-scanned experimental models. AAPG Bulletin, 95(7), 1147-1180. https://doi.org/10.1306/09271010060.
  62. Meyer, V., Nicol, A., Childs, C., Walsh, J.J., Watterson, J., 2002. Progressive localization of strain during the evolution of a normal fault population. Journal of Structural Geology 24(8), 1215-1231. https://doi.org/10.1016/S0191-8141(01)00104-3
  63. Morley, C. K., Back, S., van Rensbergen, P., Crevello, P., & Lambiase, J. J. (2003). Characteristics of repeated, detached, Miocene- Pliocene tectonic inversion events, in a large delta province on an active margin, Brunei Darussalam, Borneo. Journal of Structural Geology, 25, 1147-1169. https://doi.org/10.1016/S0191-8141(02) 00130-X.
  64. Nicol, A., Walsh, J., Berryman, K., Nodder, S., 2005. Growth of a normal fault by the accumulation of slip over millions of years. Journal of Structural Geology 27(2), 327-342. https://doi.org/10.1016/j.jsg.2004.09.002
  65. Nogueira, F. C. C., Marques, F. O., Bezerra, F. H. R., de Castro, D. L., & Fuck, R. A. (2015). Cretaceous intracontinental rifting and post-rift inversion in NE Brazil: Insights from the Rio do Peixe Basin. Tectonophysics, 644-645, 92-107. https://doi.org/10.1016/j.tecto.2014.12.016.
  66. Okada, H., 1999.Plume-related sedimentary basins in East Asia during the cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology 150, 1-11. https://doi.org/10.1016/S0031-0182(99)00003-6
  67. Okada, H., 2000.Nature and development of cretaceous sedimentary basins in East Asia: a review. Geosciences Journal 4, 271-282. https://doi.org/10.1007/BF02914036
  68. Okada, H., Sakai, T., 2000.The cretaceous system of the Japanese Islands and tis physical environments. Developments in Palaeontology and Stratigraphy 17, 113-144. https://doi.org/10.1016/S0920-5446(00)80027-8
  69. Otsuki, K., 1985. Plate tectonics of eastern Eurasia in the light of fault systems. Tohoku University Scientific Report: 2nd Series (Geology), 55, pp. 141-251.
  70. Panien, M., Schreurs, G., & Pfiffner, A. (2005). Sandbox experiments on basin inversion: Testing the influence of basin orientation and basin fill. Journal of Structural Geology, 27, 433-445. https://doi.org/10.1016/j.jsg.2004.11.001.
  71. Pearce, R.K., Sanchez de la Muela, A., Moorkamp, M., Hammond, J.O., Mitchell, T.M., Cembrano, J., Araya Vargas, J., Meredith, P.G., Iturrieta, P., Perez-Estay, N. and Marshall, N.R., 2020. Reactivation of fault systems by compartmentalized hydrothermal fluids in the Southern Andes revealed by magnetotelluric and seismic data. Tectonics, 39(12), p.e2019TC005997.
  72. Ramsay JG, Huber MI (1987) The techniques of modern structural geology, vol. 2: Folds and fractures. Academic Press, London, 509 pp.
  73. Roberts, D. G. (1989). Basin inversion in and around the British Isles. In M. A. Cooper, & G. D. Williams (Eds.), Inversion tectonics, Vol. 44 (pp. 131-150). London, UK: Geological Society, London, Special Publications.
  74. Rowley, D.B., 1996. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth and Planetary Science Letters, 145(1-4), pp.1-13. https://doi.org/10.1016/S0012-821X(96)00201-4
  75. Schlische, R. W., Withjack, M. O., & Olsen, P. E. (2003). Relative Timing of CAMP, Rifting, Continental Breakup, and Basin Inversion: Tectonic Significance. In W. E. Hames, J. G. Mchone, P. R. Renne, & C. Ruppel (Eds.), The Central Atlantic Magmatic Province, Insights from Fragments of Pangea. American Geophysical Union, Geophysical Monograph 136, 33-59. https://doi.org/10.1029/136GM03.
  76. Sibson, R. H. (1995). Selective fault reactivation during basin inversion: potential for fluid redistribution through fault-valve action. In J. G. Buchanan, & P. G. Buchanan (Eds.), Basin Inversion. Geological Society Special Publication 54, 15-28. https://doi.org/10.1144/GSL.SP.1995.088.01.02.
  77. Tavani, S., Mencos, J., Bausa, J., & Munoz, J. A. (2011). The fracture pattern of the Sant Corneli Boixols oblique inversion anticline (Spanish Pyrenees). Journal of Structural Geology, 33, 1662-1680. https://doi.org/10.1016/j.jsg.2011.08.007.
  78. Tikoff, B. & Teyssier, C. 1994. Strain modelling of displacement-field partitioning in transpressional orogens. Journal of Structural Geology, 16, 1575-1588. https://doi.org/10.1016/0191-8141(94)90034-5
  79. Tuitt, A., Underhill, J. R., Ritchie, J. D., Johnson, H., & Hitchen, K. (2010). Timing, controls and consequences of compression in the Rockall-Faroe area of the NE Atlantic Margin. In B. A. Vinning, & S. C. Pickering (Eds.), Petroleum Geology: From Mature Basins to New Frontiers - Proceedings of the 7th Petroleum Geology Conference, 963-977. https://doi.org/10.1144/0070963.
  80. Turner, J. P., & Williams, G. A. (2004). Sedimentary basin inversion and intra-plate shortening. Earth-science Reviews, 65, 277-304. https://doi.org/10.1016/j.earscirev.2003.10.002.
  81. Vasconcelos, D.L., Marques, F.O., Nogueira, F.C., Perez, Y.A., Bezerra, F.H., Stohler, R.C. and Souza, J.A., 2021. Tectonic inversion assessed by integration of geological and geophysical data: The intracontinental Rio do Peixe Basin, NE Brazil. Basin Research, 33(1), pp. 705-728. https://doi.org/10.1111/bre.12491
  82. Walsh, J.J., Nicol, A., Childs, C., 2002. An alternative model for the growth of faults. Journal of Structural Geology 24, 1669-1675. https://doi.org/10.1016/S0191-8141(01)00165-1
  83. Williams, G.D., Powell, C.M., Cooper, M.A., 1989. Geometry and kinematics of inversion tectonics. In: Cooper, M.A., Williams, G.D. (Eds.), Inversion Tectonics (special issue). Geological Society of London Special Publication 44, 3-16.
  84. Won, C. K., Lee, M. W., Kim, K. H., Hong, Y. K., Woo, J. G., and Lee, J. M., 1990, The study on Cretaceous volcanism in the Sunchang Trough - compare study between Kyeongsang Basin, Sunchang Trough, and Inner-zone of S-W Japan: Journal of the Geological Society of Korea, v. 26, no. 2, p. 165-184 (in Korean with English abstract).
  85. Won, C.K., So, C.S. and Yun, S., 1980. Explanatory text of the geological map of Sinryeong sheet (1:50,000). Korea Research Institute of Geoscience and Mineral Resources, p 21.
  86. Wu, J. E., McClay, K., Whitehouse, P., & Dooley, T. (2009). 4D analogue modelling of transtensional pull-apart basins. Marine and Petroleum Geology, 26(8), 1608-1623. https://doi.org/10.1016/j.marpetgeo.2008.06.007.
  87. Xu, J., Zhu, G., 1994. Tectonic models of the Tan-Lu fault zone, eastern China. International Geology Review 36, 771-784. https://doi.org/10.1080/00206819409465487
  88. Yamada, Y., & McClay, K. (2004). 3-D analog modeling of inversion thrust structures. AAPG Memoirs, 82, 276-301.
  89. Yang, S. J., & Kim, Y. S. (2022). Descriptive classification of dyke morphologies based on similarity to fracture geometries. Geosciences Journal, 1-15.
  90. Ye, Q., Mei, L., Shi, H., Camanni, G., Shu, Y., Wu, J., Yu, L., Deng, P., Li, G., 2018. The late Cre-taceous tectonic evolution of the South China Sea area: An overview, and new per-spectives from 3D seismic reflection data. Earth-Science Reviews 187, 186-204. https://doi.org/10.1016/j.earscirev.2018.09.013
  91. Ziegler, P.A., Cloetingh, S., van Wees, J.D., 1995. Dynamics of intra-plate compressional deformation: The Alpine foreland and other examples. Tectonophysics 252, 7-59.  https://doi.org/10.1016/0040-1951(95)00102-6