THE GRAM AND HANKEL MATRICES VIA SPECIAL NUMBER SEQUENCES

Yasemin Alp* and E.Gokcen Kocer

Abstract

In this study, we consider the Hankel and Gram matrices which are defined by the elements of special number sequences. Firstly, the eigenvalues, determinant, and norms of the Hankel matrix defined by special number sequences are obtained. Afterwards, using the relationship between the Gram and Hankel matrices, the eigenvalues, determinants, and norms of the Gram matrices defined by number sequences are given.

1. Introduction

Many researchers have studied special matrices and some number sequences until today. Let's give some studies associated with the circulant and Hankel matrices. Solak has defined the circulant matrices with Fibonacci and Lucas numbers and investigated the norms of these matrices in [27]. Alptekin has considered the circulant and semicirculant matrices with Horadam's numbers in [2]. The other articles related to circulant matrices which are defined by various number sequences can be found in $[3,15,25,29-31]$. It is possible to see some of the studies related to k-circulant (r-circulant) matrices in [4,17-24,33]. Also, Kızılates and Tuglu have defined the geometric circulant matrices in [12, 14].

In [11], the Hankel matrix $H=\left(h_{i j}\right)$ has been defined as

$$
h_{i j}=s_{i+j-1}
$$

where the sequence $\left\{s_{i}\right\}$ and $i, j=1,2, \ldots$ The Hankel matrices, which are defined by special number sequences, and their properties have been studied in $[1,28,34,35]$.

Sequences of integer have an important place in literature. The most famous of these sequences are the Fibonacci and Lucas sequences. In [9,10], the authors have given some generalized number sequences and obtained some properties of these sequences. Now, let's give the definitions and properties of these generalized number sequences.

[^0]The sequence $\left\{u_{n}\right\}$ is defined by the following recurrence relation for $n \geq 2$,

$$
\begin{equation*}
u_{n}=p u_{n-1}+u_{n-2} \tag{1}
\end{equation*}
$$

with the initial conditions $u_{0}=0, u_{1}=1$.
Similarly, the sequence $\left\{v_{n}\right\}$ is defined by the following recurrence relation for $n \geq 2$,

$$
\begin{equation*}
v_{n}=p v_{n-1}+v_{n-2} \tag{2}
\end{equation*}
$$

with the initial conditions $v_{0}=2, v_{1}=p$. Note that, taking $p=1$ in (1) and (2), the Fibonacci and Lucas numbers are obtained. Also, if we take $p=2$ in (1) and (2), we have Pell and Pell-Lucas numbers. For more information, please refer to $[9,10,13]$ and closely related references therein.

The characteristic equation of recurrences (1) and (2) is given as

$$
\begin{equation*}
\lambda^{2}-p \lambda-1=0 . \tag{3}
\end{equation*}
$$

The Binet's formulas of the $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ sequences are obtained as

$$
u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \text { and } v_{n}=\alpha^{n}+\beta^{n}
$$

where α and β are roots of the characteristic equation (3).
Also, some identities between $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ sequences are given as follows:

$$
\begin{gather*}
u_{2 n}=u_{n} v_{n} \tag{4}\\
v_{n+m}+(-1)^{m} v_{n-m}=v_{m} v_{n} \\
u_{n+m}-(-1)^{m} u_{n-m}=u_{m} v_{n} \\
v_{n+m}-(-1)^{m} v_{n-m}=\left(p^{2}+4\right) u_{m} u_{n}
\end{gather*}
$$

$$
\left(p^{2}+4\right) u_{n}^{2}-v_{n}^{2}=4(-1)^{n+1}
$$

$$
v_{n}-p u_{n}=2 u_{n-1}
$$

$$
u_{n-1}+u_{n+1}=v_{n}
$$

$$
v_{2 n}+(-1)^{n} 2=v_{n}^{2}
$$

In [8], the Gram matrix $B=\left(b_{i k}\right)$ has been defined by $b_{i k}=\left\langle x_{i}, x_{k}\right\rangle$ such that $x_{1}, x_{2}, \ldots, x_{m}$ are vectors in some Hilbert space and $i, k=1,2, \ldots, m . B$ has been denoted $G\left(x_{1}, x_{2}, \ldots, x_{m}\right)$. Also, Halperin has introduced the Gram matrix and given the connection between the Gram and hermitian definite matrices in [8].

For an $m \times m$ matrix A with columns $x_{1}, x_{2}, \ldots, x_{m}$, the matrix product $G=A A^{*}$ is called the Gram matrix associated with the set m - vectors $x_{1}, x_{2}, \ldots, x_{m}$.

In [16], the explicit expressions for the inverse of the Gram matrix of the Bernstein basis and its principal submatrices are given. Sreeram and Agathoklis have obtained new properties of the Gram matrix. Also, they have given new techniques for the computation of the Gram matrix and characteristic equation of the systems by using these properties in [32]. In [6], the author has stated that Gram matrices provide a natural link between positive semidefinite matrices and systems of vectors in an Euclidean space. Also, some examples of the interplay between matrix theory, graph theory, and n - dimensional Euclidean geometry have been presented. For more information, please refer to $[5,7,26]$.

Motivated by some of the above recent papers, we consider the Hankel matrices which are defined by the elements of the sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ in the second section. Also, we give the eigenvalues and norms of the Gram matrix, which is defined by the elements of the sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ in the third section.

2. Hankel Matrices with $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$

In this section, we consider the Hankel matrices, which are defined by elements of the sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$. Firstly, we give the Hankel matrix H_{u} with elements of the sequence $\left\{u_{n}\right\}$ as follows:

$$
\begin{equation*}
H_{u}=\left(h_{i, j}\right) \text { and } h_{i, j}=u_{i+j} \tag{12}
\end{equation*}
$$

for $i, j=0,1, \ldots, n-1$.
Theorem 2.1. The characteristic polynomial of the Hankel matrix H_{u} is given as follows:

$$
\left|\lambda I-H_{u}\right|=\left\{\begin{array}{ll}
\lambda^{n-2}\left(\lambda^{2}-\frac{u_{2 n-1}-1}{p} \lambda+\frac{2-v_{2 n}}{p^{2}\left(p^{2}+4\right)}\right), & n \text { is even } \tag{13}\\
\lambda^{n-2}\left(\lambda^{2}-\frac{u_{2 n-1}-1}{p} \lambda+\frac{p^{2}+2-v_{2 n}}{p^{2}\left(p^{2}+4\right)}\right), & n \text { is odd }
\end{array} .\right.
$$

Proof. If we apply the row and column operations to the Hankel matrix H_{u}, we obtain that the rank of H_{u} is 2 . Therefore, the characteristic equation of the matrix H_{u} is

$$
\lambda^{n}-A \lambda^{n-1}+B \lambda^{n-2}=0
$$

In this equation, $A=\operatorname{tr} H_{u}$ and B equals the sum of second-order principal minor. Firstly, let's prove the following identity:

$$
A=\operatorname{tr} H_{u}=\sum_{k=o}^{n-1} u_{2 k}
$$

Using Binet's formula for the sequence $\left\{u_{n}\right\}$ and (1), we have

$$
\sum_{k=0}^{n-1} u_{2 k}=\frac{-1}{p^{2}}\left(u_{2 n-2}-u_{2 n}+u_{2}\right)=\frac{u_{2 n-1}-1}{p}
$$

The sum of the second-order principal minors is

$$
B=\sum_{k=1}^{n-1}(k-n) u_{k}^{2} .
$$

Using Binet's formula and the recurrence relation of the sequence $\left\{u_{n}\right\}$, we have

$$
\sum_{k=1}^{n-1} k u_{k}^{2}= \begin{cases}\frac{1}{p^{2}+4}\left(\frac{n p v_{2 n-1}-v_{2 n}+2}{p^{2}}+n\right), & n \text { is even } \\ \frac{1}{p^{2}+4}\left(\frac{n p v_{2 n-1}-v_{2 n}+2}{p^{2}}+1-n\right), & n \text { is odd }\end{cases}
$$

and

$$
\sum_{k=1}^{n-1}-n u_{k}^{2}=\left\{\begin{array}{ll}
\frac{-n v_{2 n-1}-n p}{\left(p^{2}+4\right) p}, & n \text { is even } \\
\frac{-n v_{2 n-1}+n p}{\left(p^{2}+4\right) p}, & n \text { is odd }
\end{array} .\right.
$$

Hereby, the characteristic polynomial of the matrix H_{u} is given as

$$
\left|\lambda I-H_{u}\right|=\left\{\begin{array}{ll}
\lambda^{n-2}\left(\lambda^{2}-\frac{u_{2 n-1}-1}{p} \lambda+\frac{2-v_{2 n}}{p^{2}\left(p^{2}+4\right)}\right), & n \text { is even } \\
\lambda^{n-2}\left(\lambda^{2}-\frac{u_{2 n-1}-1}{p} \lambda+\frac{p^{2}+2-v_{2 n}}{p^{2}\left(p^{2}+4\right)}\right), & n \text { is odd }
\end{array} .\right.
$$

Using (13), (10), and (8), the eigenvalues of the Hankel matrix H_{u} are obtained as

$$
\lambda_{1,2}= \begin{cases}\frac{1}{2 p}\left(u_{2 n-1}-1 \mp\left(v_{2 n-1}+p\right) \sqrt{\frac{1}{p^{2}+4}}\right), & n \text { is even } \tag{14}\\ \frac{1}{2 p}\left(u_{2 n-1}-1 \mp \sqrt{\frac{\left(v_{2 n-1}+p\right)^{2}-4 p^{2}}{p^{2}+4}}\right), & n \text { is odd }\end{cases}
$$

and $\lambda_{m}=0$ for $m=3,4, \ldots, n$.
Taking $p=1$ in (14), the eigenvalues of the Hankel matrix, which is defined by Fibonacci numbers are obtained as follows:

$$
\lambda_{1,2}= \begin{cases}\frac{1}{2}\left(F_{2 n-1}-1 \mp \frac{1}{\sqrt{5}}\left(L_{2 n-1}+1\right)\right), & n \text { is even } \\ \frac{1}{2}\left(F_{2 n-1}-1 \mp \frac{1}{\sqrt{5}} \sqrt{L_{2 n-1}^{2}+2 L_{2 n-1}-3}\right), & n \text { is odd }\end{cases}
$$

and $\lambda_{m}=0$ for $m=3,4, \ldots, n$ (see [28]). Similarly, taking $p=2$ in (14), the eigenvalues of the Hankel matrix H_{P}, which is defined by the Pell numbers are given as

$$
\lambda_{1,2}= \begin{cases}\frac{1}{4}\left(P_{2 n-1}-1 \mp \frac{1}{2 \sqrt{2}}\left(Q_{2 n-1}+2\right)\right), & n \text { is even } \\ \frac{1}{4}\left(P_{2 n-1}-1 \mp \frac{1}{2 \sqrt{2}} \sqrt{Q_{2 n-1}^{2}+4 Q_{2 n-1}-12}\right), & n \text { is odd }\end{cases}
$$

and $\lambda_{m}=0$ for $m=3,4, \ldots, n$.

Naturally, the determinant of the Hankel matrix H_{u} is $\operatorname{det} H_{u}=-1$ for $n=2$. For other n, $\operatorname{det} H_{u}=0$.

Since the Hankel matrix H_{u} is symmetric matrix, the spectral norm of H_{u} is the maximum eigenvalue of H_{u}. So, the spectral norm of the Hankel matrix H_{u} is obtained as follows:

$$
\left\|H_{u}\right\|_{2}=\left\{\begin{array}{ll}
\frac{1}{2 p}\left(u_{2 n-1}-1+\left(v_{2 n-1}+p\right) \sqrt{\frac{1}{p^{2}+4}}\right), & n \text { is even } \tag{15}\\
\frac{1}{2 p}\left(u_{2 n-1}-1+\sqrt{\frac{\left(v_{2 n-1}+p\right)^{2}-4 p^{2}}{p^{2}+4}}\right), & n \text { is odd }
\end{array} .\right.
$$

Therefore, the spectral norm of the Hankel matrix, which is defined by the Fibonacci numbers is stated as

$$
\left\|H_{F}\right\|_{2}= \begin{cases}\frac{1}{2}\left(F_{2 n-1}-1+\frac{1}{\sqrt{5}}\left(L_{2 n-1}+1\right)\right), & n \text { is even } \\ \frac{1}{2}\left(F_{2 n-1}-1+\frac{1}{\sqrt{5}} \sqrt{L_{2 n-1}^{2}+2 L_{2 n-1}-3}\right), & n \text { is odd }\end{cases}
$$

where F_{n} and L_{n} are the $n t h$ Fibonacci and Lucas numbers (see [28]). The spectral norm of the Hankel matrix, which is defined by the Pell numbers is given as

$$
\left\|H_{P}\right\|_{2}= \begin{cases}\frac{1}{4}\left(P_{2 n-1}-1+\frac{1}{2 \sqrt{2}}\left(Q_{2 n-1}+2\right)\right), & n \text { is even } \\ \frac{1}{4}\left(P_{2 n-1}-1+\frac{1}{2 \sqrt{2}} \sqrt{Q_{2 n-1}^{2}+4 Q_{2 n-1}-12}\right), & n \text { is odd }\end{cases}
$$

where P_{n} and Q_{n} are the $n t h$ Pell and Pell-Lucas numbers (see [1]).
Theorem 2.2. The Euclidean norm of the Hankel matrix H_{u} is given as follows:

$$
\left\|H_{u}\right\|=\left\{\begin{array}{ll}
\sqrt{\frac{v_{4 n-2}-2 v_{2 n-2}+p^{2}+2}{p^{2}\left(p^{2}+4\right)}}, & n \text { is even } \tag{16}\\
\sqrt{\frac{v_{4 n-2}-2 v_{2 n-2}-p^{2}+2}{p^{2}\left(p^{2}+4\right)}}, & n \text { is odd }
\end{array} .\right.
$$

Proof. Considering (12) and the Binet's formula of the sequence $\left\{u_{n}\right\}$, we have

$$
\begin{aligned}
\sum_{i, j=0}^{n-1} u_{i+j}^{2} & =\frac{1}{(\alpha-\beta)^{2}} \sum_{i, j=0}^{n-1}\left(\alpha^{i+j}-\beta^{i+j}\right)^{2} \\
& =\frac{1}{p^{2}+4} \sum_{i, j=0}^{n-1}\left(\alpha^{2 i+2 j}+\beta^{2 i+2 j}-2(-1)^{i+j}\right)
\end{aligned}
$$

Using the recurrence relation of the sequence $\left\{v_{n}\right\}$, the result is clear.

Considering different values of n and p in (15) and (16), we obtain the following table:

n	p	$\left\\|H_{u}\right\\|_{2}$	$\left\\|H_{u}\right\\|$
2	1	1.618	1.732
	2	2.414	2.449
3	1	4.646	4.690
	2	14.416	14.422
4	1	12.708	12.728
	2	84.426	84.427
5	1	33.712	33.719
	2	492.426	492.427
10	1	4180.724	4180.724
	2	3312554.427	3312554.427
Table 1. The spectral and Euclidean norms of H_{u}			

Now, we consider $H_{v}=\left(h_{i, j}\right)$ Hankel matrix, which is defined by the elements of the sequence $\left\{v_{n}\right\}$ as follows:

$$
\begin{equation*}
h_{i, j}=v_{i+j} \tag{17}
\end{equation*}
$$

for $i, j=0,1, \ldots, n-1$. Similar to the proof of (13), we have the characteristic polynomial of the Hankel matrix H_{v} as follows:

$$
\left|\lambda I-H_{v}\right|=\left\{\begin{array}{ll}
\lambda^{n-2}\left(\lambda^{2}-\frac{v_{2 n-1}+p}{p} \lambda+\frac{v_{2 n}-2}{p^{2}}\right), & n \text { is even } \\
\lambda^{n-2}\left(\lambda^{2}-\frac{v_{2 n-1}+p}{p} \lambda+\frac{v_{2 n}-p^{2}-2}{p^{2}}\right), & n \text { is odd }
\end{array} .\right.
$$

Therefore, the eigenvalues of the Hankel matrix H_{v} are given as
(18) $\lambda_{1,2}= \begin{cases}\frac{1}{2 p}\left(v_{2 n-1}+p \mp\left(u_{2 n-1}-1\right) \sqrt{p^{2}+4}\right), & n \text { is even } \\ \frac{1}{2 p}\left(v_{2 n-1}+p \mp \sqrt{\left(u_{2 n-1}-1\right)^{2}\left(p^{2}+4\right)+4 p^{2}}\right), & n \text { is odd }\end{cases}$
and $\lambda_{m}=0$ for $m=3,4, \ldots, n$.
If we take $p=1$ and $p=2$ in (18), we obtain the eigenvalues of the Hankel matrix with Lucas and Pell-Lucas numbers, respectively.

From (18), the determinant of the Hankel matrix H_{v} is $\operatorname{det} H_{v}=p^{2}+4$ for $n=2$.

Using the eigenvalues of the Hankel matrix H_{v}, the spectral norm of H_{v} is obtained as follows:

$$
\left\|H_{v}\right\|_{2}= \begin{cases}\frac{1}{2 p}\left(v_{2 n-1}+p+\left(u_{2 n-1}-1\right) \sqrt{p^{2}+4}\right), & n \text { is even } \tag{19}\\ \frac{1}{2 p}\left(v_{2 n-1}+p+\sqrt{\left(u_{2 n-1}-1\right)^{2}\left(p^{2}+4\right)+4 p^{2}}\right), & n \text { is odd }\end{cases}
$$

Taking $p=1$ and $p=2$ in (19), the special cases of the spectral norm of the Hankel matrix H_{v} are given as follows:

$$
\left\|H_{L}\right\|_{2}= \begin{cases}\frac{1}{2}\left(L_{2 n-1}+1+\sqrt{5}\left(F_{2 n-1}-1\right)\right), & n \text { is even } \\ \frac{1}{2}\left(L_{2 n-1}+1+\sqrt{5\left(F_{2 n-1}-1\right)^{2}+4}\right), & n \text { is odd }\end{cases}
$$

where F_{n} and L_{n} are the $n t h$ Fibonacci and Lucas numbers and

$$
\left\|H_{Q}\right\|_{2}= \begin{cases}\frac{1}{4}\left(Q_{2 n-1}+2+2 \sqrt{2}\left(P_{2 n-1}-1\right)\right), & n \text { is even } \\ \frac{1}{4}\left(Q_{2 n-1}+2+\sqrt{8\left(P_{2 n-1}-1\right)^{2}+16}\right), & n \text { is odd }\end{cases}
$$

where P_{n} and Q_{n} are the $n t h$ Pell and Pell-Lucas numbers.
Theorem 2.3. The Euclidean norm of the Hankel matrix H_{v} is given as follows:

$$
\left\|H_{v}\right\|=\left\{\begin{array}{ll}
\sqrt{\frac{v_{4 n-2}-2 v_{2 n-2}+p^{2}+2}{p^{2}}}, & n \text { is even } \tag{20}\\
\sqrt{\frac{v_{4 n-2}-2 v_{2 n-2}+3 p^{2}+2}{p^{2}}}, & n \text { is odd }
\end{array} .\right.
$$

Proof. Considering the definition of the Hankel matrix H_{v} and the Binet's formula of the sequence $\left\{v_{n}\right\}$, we have

$$
\begin{aligned}
\sum_{i, j=0}^{n-1} v_{i+j}^{2} & =\sum_{i, j=0}^{n-1}\left(\alpha^{i+j}+\beta^{i+j}\right)^{2} \\
& =\sum_{i, j=0}^{n-1}\left(\alpha^{2 i+2 j}+\beta^{2 i+2 j}+2(-1)^{i+j}\right) .
\end{aligned}
$$

Using the recurrence relation of the sequence $\left\{v_{n}\right\}$, the result is clear.
For the different values n and p, the Euclidean and spectral norms of the Hankel matrix H_{v} are given in the following table.

n	p	$\left\\|H_{v}\right\\|_{2}$	$\left\\|H_{v}\right\\|$
2	1	3.618	3.873
	2	6.828	6.928
3	1	10.583	10.677
	2	40.824	40.841
4	1	28.416	28.460
	2	238.794	238.797
5	1	75.409	75.425
	2	1392.794	1392.794
10	1	9348.382	9348.382
	2	9369318.793	9369318.793
Table 2. The spectral and Euclidean norms of H_{v}			

3. Gram Matrices with $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$

Definition 3.1. The Gram matrix $G_{u}=\left(g_{i, j}\right)$ is defined by the elements of the sequence $\left\{u_{n}\right\}$, as follows:

$$
g_{i, j}=\left\langle x_{i}, x_{j}\right\rangle
$$

for $x_{i}=\left(u_{i}, u_{i+1}, \ldots, u_{n+i-1}\right)$ where u_{i} is the ith elements of the sequence $\left\{u_{n}\right\}$.

Also, the elements of the Gram matrix G_{u} can be given as follows:

$$
\begin{equation*}
g_{i, j}=\sum_{k=0}^{n-1} u_{k+i} u_{k+j} \tag{21}
\end{equation*}
$$

for $i, j=0,1, \ldots, n-1$. From (21), (5), (7) and the Binet's formula of $\left\{u_{n}\right\}$, $g_{i, j}$ can be considered as follows:

$$
g_{i, j}= \begin{cases}\frac{u_{n} u_{n+i+j-1}}{p}, & n \text { is even } \tag{22}\\ \frac{v_{n} v_{n+i+j-1+p(-1)^{j+1} v_{i-j}}^{p\left(p^{2}+4\right)},}{} n \text { is odd }\end{cases}
$$

for $i, j=0,1, \ldots, n-1$. If we take $p=1$ and $p=2$ in (22), we obtain the Gram matrices which are defined by the Fibonacci and Pell numbers, respectively.

Using (12) and (21), we have $G_{u}=H_{u} H_{u}^{T}$, where the Hankel matrix H_{u} is defined with the sequence $\left\{u_{n}\right\}$. Since the matrix H_{u} is a symmetric matrix, we have

$$
\begin{equation*}
G_{u}=H_{u}^{2} \tag{23}
\end{equation*}
$$

Theorem 3.2. The eigenvalues of the Gram matrix G_{u} are obtained as

$$
\lambda_{1,2}=\frac{1}{2 p^{2}\left(p^{2}+4\right)}\left(v_{2 n-1}^{2}-2 v_{2 n-2}+p^{2}+4 \mp\left(u_{4 n-2}-2 u_{2 n-2}-p\right) \sqrt{p^{2}+4}\right)
$$

for even n and
$\lambda_{1,2}=\frac{1}{2 p^{2}\left(p^{2}+4\right)}\left(v_{2 n-1}^{2}-2 v_{2 n-2}-p^{2}+4 \mp\left(u_{2 n-1}-1\right) \sqrt{\left(\left(v_{2 n-1}+p\right)^{2}-4 p^{2}\right)\left(p^{2}+4\right)}\right)$ for odd n. Also, $\lambda_{m}=0$ for $m=3,4, \ldots, n$,

Proof. Using (14) and (23), the result is clear.
Taking $p=1$ in the above theorem, the eigenvalues of the Gram matrix G_{F} with Fibonacci numbers are given as

$$
\lambda_{1,2}= \begin{cases}\frac{1}{10}\left(L_{2 n-1}^{2}-2 L_{2 n-2}+5 \mp \sqrt{5}\left(F_{4 n-2}-2 F_{2 n-2}-1\right)\right), & n \text { is even } \\ \frac{1}{10}\left(L_{2 n-1}^{2}-2 L_{2 n-2}+3 \mp\left(F_{2 n-1}-1\right) \sqrt{5\left(\left(L_{2 n-1}+1\right)^{2}-4\right)}\right), & n \text { is odd }\end{cases}
$$

and $\lambda_{m}=0$ for $m=3,4, \ldots, n$.
For $p=2$, the eigenvalues of the Gram matrix G_{P} with Pell numbers are obtained as

$$
\lambda_{1,2}= \begin{cases}\frac{1}{64}\left(Q_{2 n-1}^{2}-2 Q_{2 n-2}+8 \mp 2 \sqrt{2}\left(P_{4 n-2}-2 P_{2 n-2}-2\right)\right), & n \text { is even } \\ \frac{1}{64}\left(Q_{2 n-1}^{2}-2 Q_{2 n-2} \mp\left(P_{2 n-1}-1\right) \sqrt{8\left(\left(Q_{2 n-1}+2\right)^{2}-16\right)}\right), & n \text { is odd }\end{cases}
$$

and $\lambda_{m}=0$ for $m=3,4, \ldots, n$.
Clearly, the determinant of the Gram matrix G_{u} is $\operatorname{det} G_{u}=1$ for $n=2$. Since the Gram matrix G_{u} is a symmetric matrix, the spectral norm of the matrix G_{u} is the maximum eigenvalue of the matrix G_{u}. So, we can give the following theorem.

Theorem 3.3. The spectral norm of the Gram matrix G_{u} is given as

$$
\left\|G_{u}\right\|_{2}=\frac{1}{2 p^{2}\left(p^{2}+4\right)}\left(v_{2 n-1}^{2}-2 v_{2 n-2}+p^{2}+4+\left(u_{4 n-2}-2 u_{2 n-2}-p\right) \sqrt{p^{2}+4}\right)
$$

for n even and
$\left\|G_{u}\right\|_{2}=\frac{1}{2 p^{2}\left(p^{2}+4\right)}\left(v_{2 n-1}^{2}-2 v_{2 n-2}-p^{2}+4+\left(u_{2 n-1}-1\right) \sqrt{\left(\left(v_{2 n-1}+p\right)^{2}-4 p^{2}\right)\left(p^{2}+4\right)}\right)$ for n odd.

Let's give the special cases of the above theorem for $p=1$ and $p=2$. The spectral norms of the Gram matrices G_{F} and G_{P} which are defined by the Fibonacci and Pell numbers are given as follows:

$$
\left\|G_{F}\right\|_{2}= \begin{cases}\frac{1}{10}\left(L_{2 n-1}^{2}-2 L_{2 n-2}+5+\sqrt{5}\left(F_{4 n-2}-2 F_{2 n-2}-1\right)\right), & n \text { is even } \\ \frac{1}{10}\left(L_{2 n-1}^{2}-2 L_{2 n-2}+3+\left(F_{2 n-1}-1\right) \sqrt{5\left(\left(L_{2 n-1}+1\right)^{2}-4\right)}\right), & n \text { is odd }\end{cases}
$$

and

$$
\left\|G_{P}\right\|_{2}= \begin{cases}\frac{1}{64}\left(Q_{2 n-1}^{2}-2 Q_{2 n-2}+8+2 \sqrt{2}\left(P_{4 n-2}-2 P_{2 n-2}-2\right)\right), & n \text { is even } \\ \frac{1}{64}\left(Q_{2 n-1}^{2}-2 Q_{2 n-2}+\left(P_{2 n-1}-1\right) \sqrt{8\left(\left(Q_{2 n-1}+2\right)^{2}-16\right)}\right), & n \text { is odd }\end{cases}
$$

Theorem 3.4. The Euclidean norm of the Gram matrix G_{u} is given as follows:

$$
\left\|G_{u}\right\|= \begin{cases}\frac{u_{n}^{2}}{p^{2}} \sqrt{v_{4 n-4}}, & n \text { is even } \tag{24}\\ \frac{\sqrt{v_{n}^{2}\left(v_{n}^{2} v_{4 n-4}+4 p^{2}\left(1-v_{2 n-2}\right)\right)+2 p^{4}}}{p^{2}\left(p^{2}+4\right)}, & n \text { is odd }\end{cases}
$$

Proof. For even n, using Binet's formula of the sequence $\left\{u_{n}\right\}$ and (22), we have,

$$
\begin{aligned}
\left\|G_{u}\right\|^{2} & =\sum_{i, j=0}^{n-1} \frac{1}{p^{2}} u_{n}^{2} u_{n+i+j-1}^{2} \\
& =\frac{u_{n}^{2}}{p^{2}\left(p^{2}+4\right)} \sum_{i, j=0}^{n-1}\left(\alpha^{2 n+2 i+2 j-2}+\beta^{2 n+2 i+2 j-2}-2(-1)^{n+i+j-1}\right)
\end{aligned}
$$

From (1), (6) and (7), we obtain

$$
\left\|G_{u}\right\|=\frac{u_{n}^{2}}{p^{2}} \sqrt{v_{4 n-4}} .
$$

Let's take as an n odd. Similarly, using Binet's formula of the sequence $\left\{v_{n}\right\}$ and (22), we have

$$
\begin{aligned}
\left\|G_{u}\right\|^{2} & =\sum_{i, j=0}^{n-1}\left(\frac{v_{n} v_{n+i+j-1}+p(-1)^{j+1} v_{i-j}}{p\left(p^{2}+4\right)}\right)^{2} \\
& =\frac{1}{p^{2}\left(p^{2}+4\right)^{2}} \sum_{i, j=0}^{n-1}\left(v_{n}^{2} v_{n+i+j-1}^{2}+p^{2} v_{i-j}^{2}+2 v_{n} v_{n+i+j-1} p(-1)^{j+1} v_{i-j}\right)
\end{aligned}
$$

for odd n. Now, if we consider the sums separately and use (5), (7), and (11), we obtain

$$
\begin{aligned}
& \sum_{i, j=0}^{n-1} v_{n}^{2} v_{n+i+j-1}^{2}=\frac{1}{p^{2}} v_{n}^{4} v_{4 n-4}+2 v_{n}^{2}, \\
& \sum_{i,-1}^{n-1} 2 v_{n} v_{n+i+j-1} p(-1)^{j+1} v_{i-j}=-4 v_{n}^{2} v_{2 n-2}, \\
& \sum_{i, j=0}^{n-1} p^{2} v_{i-j}^{2}=2 v_{2 n}+2 p^{2}-4 .
\end{aligned}
$$

Hence, the Euclidean norm of the matrix G_{u} is obtained as follows:

$$
\left\|G_{u}\right\|=\frac{\sqrt{v_{n}^{2}\left(v_{n}^{2} v_{4 n-4}+4 p^{2}\left(1-v_{2 n-2}\right)\right)+2 p^{4}}}{p^{2}\left(p^{2}+4\right)}
$$

Taking $p=1$ and $p=2$ in (24), the Euclidean norms are obtained as

$$
\left\|G_{F}\right\|= \begin{cases}F_{n}^{2} \sqrt{L_{4 n-4}}, & n \text { is even } \\ \frac{1}{5} \sqrt{L_{n}^{2}\left(L_{n}^{2} L_{4 n-4}+4-4 L_{2 n-2}\right)+2}, & n \text { is odd }\end{cases}
$$

and

$$
\left\|G_{P}\right\|= \begin{cases}\frac{1}{4} P_{n}^{2} \sqrt{Q_{4 n-4}}, & n \text { is even } \\ \frac{1}{32} \sqrt{Q_{n}^{2}\left(Q_{n}^{2} Q_{4 n-4}+16-16 Q_{2 n-2}\right)+32}, & n \text { is odd }\end{cases}
$$

where G_{F} and G_{P} are the Gram matrices, which are defined by the Fibonacci and Pell numbers, respectively.

We give the numerical examples for the Euclidean and spectral norms of the Gram matrix G_{u} in the following table:

n	p	$\left\\|G_{u}\right\\|_{2}$	$\left\\|G_{u}\right\\|$
2	1	2.618	2.646
	2	5.828	5.831
3	1	21.583	21.587
	2	207.827	207.827
4	1	161.498	161.499
	2	7127.818	7127.818
5	1	1136.493	1136.493
	2	242483.818	242483.818
10	1	17478449.476	17478449.476
	2	10973016830357.818	10973016830357.818
Table 3. The spectral and Euclidean norms of G_{u}			

Until now, we have investigated the Gram matrix with elements of the sequence $\left\{u_{n}\right\}$. Now, we give a definition of the Gram matrix, which is defined by elements of the sequence $\left\{v_{n}\right\}$. We consider

$$
g_{i j}=\left\langle x_{i}, x_{j}\right\rangle
$$

where $x_{i}=\left(v_{i}, v_{i+1}, \ldots, v_{n+i-1}\right)$ where v_{i} is the $i t h$ element of the sequence $\left\{v_{n}\right\}$. Also, the elements of the Gram matrix are given as follows:

$$
\begin{equation*}
g_{i, j}=\sum_{k=0}^{n-1} v_{k+i} v_{k+j} . \tag{25}
\end{equation*}
$$

From (25), (5), (7) and the Binet's formula of $\left\{v_{n}\right\}$, we have

$$
g_{i, j}= \begin{cases}\frac{\left(p^{2}+4\right) u_{n} u_{n+i+j-1}}{p}, & n \text { is even } \tag{26}\\ \frac{v_{n} v_{n+i+j-1}+p(-1)^{j} v_{i-j}}{p}, & n \text { is odd }\end{cases}
$$

and for $i, j=0,1, \ldots, n-1$.
Using the relationship $G_{v}=H_{v}^{2}$ and (18), the eigenvalues of the matrix G_{v} are given in the following theorem.

Theorem 3.5. Let the matrix G_{v} be a Gram matrix with elements of the sequence $\left\{v_{n}\right\}$. The eigenvalues of matrix G_{v} are given as

$$
\begin{equation*}
\lambda_{1,2}=\frac{1}{2 p^{2}}\left(v_{2 n-1}^{2}-2 v_{2 n-2}+p^{2}+4 \mp\left(u_{4 n-2}-2 u_{2 n-2}-p\right) \sqrt{p^{2}+4}\right) \tag{27}
\end{equation*}
$$

for even n and

$$
\begin{equation*}
\lambda_{1,2}=\frac{1}{2 p^{2}}\left(v_{2 n-1}^{2}-2 v_{2 n-2}+3 p^{2}+4 \mp\left(v_{2 n-1}+p\right) \sqrt{\left(p^{2}+4\right)\left(u_{2 n-1}-1\right)^{2}+4 p^{2}}\right) \tag{28}
\end{equation*}
$$

for odd n and $\lambda_{m}=0$ for $m=3,4, \ldots, n$.
For $p=1$ in (27) and (28), the eigenvalues of the Gram matrix G_{L} with Lucas numbers are obtained as

$$
\lambda_{1,2}= \begin{cases}\frac{1}{2}\left(L_{2 n-1}^{2}-2 L_{2 n-2}+5 \mp \sqrt{5}\left(F_{4 n-2}-2 F_{2 n-2}-1\right)\right), & n \text { is even } \\ \frac{1}{2}\left(L_{2 n-1}^{2}-2 L_{2 n-2}+7 \mp\left(L_{2 n-1}+1\right) \sqrt{5\left(F_{2 n-1}-1\right)^{2}+4}\right), & n \text { is odd }\end{cases}
$$

and $\lambda_{m}=0$ for $m=3,4, \ldots, n$.
Taking $p=2$ in (27) and (28), the eigenvalues of the Gram matrix G_{Q} with Pell-Lucas numbers are given as

$$
\lambda_{1,2}= \begin{cases}\frac{1}{8}\left(Q_{2 n-1}^{2}-2 Q_{2 n-2}+8 \mp 2 \sqrt{2}\left(P_{4 n-2}-2 P_{2 n-2}-2\right)\right), & n \text { is even } \\ \frac{1}{8}\left(Q_{2 n-1}^{2}-2 Q_{2 n-2}+16 \mp\left(Q_{2 n-1}+2\right) \sqrt{8\left(P_{2 n-1}-1\right)^{2}+16}\right), & n \text { is odd }\end{cases}
$$

and $\lambda_{m}=0$ for $m=3,4, \ldots, n$.
Clearly, the determinant of the Gram matrix G_{v} is $\operatorname{det} G_{v}=p^{4}+8 p^{2}+16$ for $n=2$.

Since the Gram matrix G_{v} is a symmetric matrix, the spectral norm of G_{v} is the maximum eigenvalue of the matrix G_{v}. So, we can give the following theorem:

Theorem 3.6. The spectral norm of the Gram matrix G_{v} is given as
(29) $\left\|G_{v}\right\|_{2}=\frac{1}{2 p^{2}}\left(v_{2 n-1}^{2}-2 v_{2 n-2}+p^{2}+4+\left(u_{4 n-2}-2 u_{2 n-2}-p\right) \sqrt{p^{2}+4}\right)$
for even n
(30) $\left\|G_{v}\right\|_{2}=\frac{1}{2 p^{2}}\left(v_{2 n-1}^{2}-2 v_{2 n-2}+3 p^{2}+4+\left(v_{2 n-1}+p\right) \sqrt{\left(p^{2}+4\right)\left(u_{2 n-1}-1\right)^{2}+4 p^{2}}\right)$
for odd n.
Taking $p=1$ and $p=2$ in (29) and (30), the spectral norms of G_{L} and G_{Q} matrices are obtained as follows:

$$
\left\|G_{L}\right\|_{2}= \begin{cases}\frac{1}{2}\left(L_{2 n-1}^{2}-2 L_{2 n-2}+5+\sqrt{5}\left(F_{4 n-2}-2 F_{2 n-2}-1\right)\right), & n \text { is even } \\ \frac{1}{2}\left(L_{2 n-1}^{2}-2 L_{2 n-2}+7+\left(L_{2 n-1}+1\right) \sqrt{5\left(F_{2 n-1}-1\right)^{2}+4}\right), & n \text { is odd }\end{cases}
$$

and

$$
\left\|G_{Q}\right\|_{2}= \begin{cases}\frac{1}{8}\left(Q_{2 n-1}^{2}-2 Q_{2 n-2}+8+2 \sqrt{2}\left(P_{4 n-2}-2 P_{2 n-2}-2\right)\right), & n \text { is even } \\ \frac{1}{8}\left(Q_{2 n-1}^{2}-2 Q_{2 n-2}+16+\left(Q_{2 n-1}+2\right) \sqrt{8\left(P_{2 n-1}-1\right)^{2}+16}\right), & n \text { is odd }\end{cases}
$$

Theorem 3.7. The Euclidean norm of the Gram matrix G_{v} is given as follows:

$$
\left\|G_{v}\right\|=\left\{\begin{array}{ll}
\frac{\left(p^{2}+4\right)}{p^{2}} u_{n}^{2} \sqrt{v_{4 n-4}}, & n \text { is even } \\
\frac{\sqrt{v_{n}^{2}\left(v_{n}^{2} v_{4 n-4}+4 p^{2}\left(1+v_{2 n-2}\right)\right)+2 p^{4}}}{p^{2}}, & n \text { is odd }
\end{array} .\right.
$$

Proof. For even n, using Binet's formula of the sequence $\left\{v_{n}\right\}$ and (26), we have

$$
\begin{aligned}
\left\|G_{v}\right\|^{2} & =\sum_{i, j=0}^{n-1} \frac{\left(p^{2}+4\right)^{2}}{p^{2}} u_{n}^{2} u_{n+i+j-1}^{2} \\
& =\frac{\left(p^{2}+4\right)^{2} u_{n}^{2}}{p^{2}} \sum_{i, j=0}^{n-1}\left(\alpha^{2 n+2 i+2 j-2}+\beta^{2 n+2 i+2 j-2}-2(-1)^{n+i+j-1}\right)
\end{aligned}
$$

Using (6) and (7), we obtain

$$
\left\|G_{u}\right\|=\frac{\left(p^{2}+4\right)}{p^{2}} u_{n}^{2} \sqrt{v_{4 n-4}}
$$

For odd n, using Binet's formula of the sequence $\left\{v_{n}\right\}$ and (26), we have

$$
\begin{aligned}
\left\|G_{v}\right\|^{2} & =\sum_{i, j=0}^{n-1}\left(\frac{v_{n} v_{n+i+j-1}+p(-1)^{j} v_{i-j}}{p}\right)^{2} \\
& =\frac{1}{p^{2}} \sum_{i, j=0}^{n-1} v_{n}^{2} v_{n+i+j-1}^{2}+p^{2} v_{i-j}^{2}+2 v_{n} v_{n+i+j-1} p(-1)^{j} v_{i-j}
\end{aligned}
$$

Now, if we consider the sums separately and use (5), (7), and (11), we obtain

$$
\begin{aligned}
& \sum_{i, j=0}^{n-1} v_{n}^{2} v_{n+i+j-1}^{2}=\frac{1}{p^{2}} v_{n}^{4} v_{4 n-4}+2 v_{n}^{2} \\
& \sum_{i, j=0}^{n-1} 2 v_{n} v_{n+i+j-1} p(-1)^{j} v_{i-j}=4 v_{n}^{2} v_{2 n-2} \\
& \sum_{i, j=0}^{n-1} p^{2} v_{i-j}^{2}=2 v_{2 n}+2 p^{2}-4
\end{aligned}
$$

Therefore, the Euclidean norm of the matrix G_{v} is obtained as follows:

$$
\left\|G_{v}\right\|=\frac{\sqrt{v_{n}^{2}\left(v_{n}^{2} v_{4 n-4}+4 p^{2}\left(1+v_{2 n-2}\right)\right)+2 p^{4}}}{p^{2}}
$$

For $p=1$ and $p=2$, the Euclidean norms of the Gram matrix G_{L} and G_{Q} are given as

$$
\left\|G_{L}\right\|= \begin{cases}5 F_{n}^{2} \sqrt{L_{4 n-4}}, & n \text { is even } \\ \sqrt{L_{n}^{2}\left(L_{n}^{2} L_{4 n-4}+4+4 L_{2 n-2}\right)+2}, & n \text { is odd }\end{cases}
$$

and

$$
\left\|G_{Q}\right\|= \begin{cases}2 P_{n}^{2} \sqrt{Q_{4 n-4}}, & n \text { is even } \\ \frac{1}{4} \sqrt{Q_{n}^{2}\left(Q_{n}^{2} Q_{4 n-4}+16+16 Q_{2 n-2}\right)+32}, & n \text { is odd }\end{cases}
$$

where F_{n}, L_{n}, P_{n} and Q_{n} are the $n t h$ Fibonacci, Lucas, Pell and Pell-Lucas numbers, respectively.

Considering different values of n and p, we have the following table:

n	p	$\left\\|G_{v}\right\\|_{2}$	$\left\\|G_{v}\right\\|$
2	1	13.090	13.229
	2	46.627	46.648
3	1	111.991	112.009
	2	1666.618	1666.618
4	1	807.492	807.496
	2	57022.545	57022.545
5	1	5686.468	5686.468
	2	1939874.545	1939874.545
10	1	87392247.382	87392247.382
	2	87784134642862.543	87784134642862.543
Table 4. The spectral and Euclidean norms of G_{v}			

4. Conclusion

In this study, we considered the sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ which are defined by the recurrence relations (1) and (2). These sequences are a general form of the Fibonacci, Pell, Lucas, and Pell-Lucas sequences. Afterwards, we studied the Gram and Hankel matrices, which are defined by the elements of the sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$. The eigenvalues, determinants, and various norms of these matrices are obtained. When we give special cases of all the results
obtained, we can obtain the eigenvalues, determinants, and norms of the Gram and Hankel matrices, which are defined by the Fibonacci, Pell, Lucas, PellLucas numbers.

Our suggestion for researchers interested in this subject is to define the Gram and Hankel matrices with Horadam numbers, and investigate the properties of these matrices.

References

[1] E. G. Alptekin, On norms of Toeplitz and Hankel matrices with the Pell, Pell-Lucas and modified Pell numbers, Selcuk Univ. J. Educ. Fac. 19 (2005), 287-297.
[2] E. G. Alptekin, T. Mansour, and N. Tuglu, Norms of circulant and semicirculant matrices with Horadam's numbers, Ars Comb. 85 (2007), 353-359.
[3] M. Bahsi and S. Solak, On the circulant matrices with arithmetic sequence, Int. J. Contemp. Math. Sciences 25 (2010), no. 5, 1213-1222.
[4] M. Bahsi and S. Solak, On the norms of r-circulant matrices with the hyper-Fibonacci and Lucas numbers, JMI, J. Math. Inequal. 8 (2014), no. 4, 693-705.
[5] S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra, Cambridge University Press, 2018.
[6] M. Fiedler, Matrices and graphs in Euclidean geometry, Electron. J. Linear Algebra 14 (2005), 51-58.
[7] P. Gorkin, J.E. Mccarthy, S. Pott, and B. D. Wick, Thin sequences and the Gram matrix, (2014); arXiv:1404.3088v2.
[8] I. Halperin, On the Gram matrix, Canad. Math. Bull. 5 (1962), no. 3, 265-280.
[9] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Q. 3 (1965), 161-175.
[10] A. F. Horadam and P. Flipponi, Cholesky algorithm matrices of Fibonacci type and properties of generalized sequences, Fibonacci Q. 29 (1991), no. 2, 164-173.
[11] I. S. Iohvidov, Hankel and Toeplitz Matrices and Forms, Birkhauser, 1982.
[12] C. Kızılates and N. Tuglu, On the bounds for the spectral norms of geometric circulant matrices, J Inequal Appl. 312 (2016), no. 3, 2-9.
[13] C. Kızılates, N. Tuglu, and B. Çekim, Binomial transforms of quadrapell sequences and quadrapell matrix sequences, J. sci. arts 38 (2017), no. 1, 69-80.
[14] C. Kızılates and N. Tuglu, On the norms of geometric and symmetric geometric circulant matrices with the tribonacci number, Gazi Univ. J. Sci. 31 (2018), no. 2, 555-567.
[15] E. G. Kocer, Circulant, negacyclic and semicirculant matrices with the modified Pell, Jacobsthal and Jacobsthal-Lucas numbers, Hacet. J. Math. Stat. 36 (2007), no. 2, 133142.
[16] L. Lu, Gram matrix of Bernstein basis: properties and applications, J. Comput. Appl. Math. 280 (2015), 37-41.
[17] B. Radicic, On the k-circulant matrices (with geometric sequence), Quaest. Math. $\mathbf{3 9}$ (2016), no. 1, 135-144.
[18] B. Radicic, On k-circulant matrices with arithmetic sequence, Filomat 31 (2017), no. 8, 2517-2525.
[19] B. Radicic, On k-circulant matrices with the Lucas numbers, Filomat 32 (2018), no. 11, 4037-4046.
[20] B. Radicic, On k-circulant matrices involving the Pell numbers, Results Math. 74 (2019), 1-13.
[21] B. Radicic, On k-circulant matrices involving the Jacobsthal numbers, Rev. de la Union Mat. Argentina, 60 (2019), no. 2, 431-442.
[22] B. Radicic, On k-circulant matrices involving geometric sequence, Hacet. J. Math. Stat. 48 (2019), no. 13, 805-817.
[23] B. Radicic, The inverse and the Moore - Penrose inverse of a k-circulant matrix with binomial coefficients, Bull. Belg. Math. Soc. - Simon Stevin 27 (2020), 29-42.
[24] B. Radicic, On k-circulant matrices involving the Pell-Lucas (and the modified Pell) numbers, Comp. Appl. Math. 40 (2021), no. 111.
[25] Z. Raza and M.A. Ali, On the norms of some special matrices with generalized Fibonacci sequence, J. Appl. Math. \& Informatics, 33 (2015), no. 5-6, 593-605.
[26] A. Seigal, Gram determinant of real binary tensors, (2016); arXiv: 1612.04420v1.
[27] S. Solak, On the norms of circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comput. 160 (2005), no. 1, 125-132.
[28] S. Solak and M. Bahsi, On the spectral norms of Hankel matrices with Fibonacci and Lucas numbers, Selcuk J. Appl. Math. 12 (2011), no. 1, 71-76.
[29] S. Solak and M. Bahsi, On the norms of circulant matrices with the complex Fibonacci and Lucas numbers, Gazi Univ. J. Sci. 29 (2016), no. 2, 487-490.
[30] S. Solak and M. Bahsi, Some properties of circulant matrices with Ducci sequences, Linear Algebra Its Appl. 542 (2018), 557-568.
[31] S. Solak, M. Bahsi, and O. Kan, On the circulant matrices with Ducci sequences and Fibonacci numbers, Filomat 32 (2018), no. 15, 5501-5508.
[32] V. Sreeram and P. Agathoklis, On the properties of Gram matrix, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 41 (1994), no. 3, 234-237.
[33] N. Tuglu and C. Kızılates, On the norms of circulant and r - circulant matrices with the hyperharmonic Fibonacci numbers, J Inequal Appl. 253 (2015), 2015.
[34] Y. Yazlik, N. Yilmaz, and N. Taskara, On the norms of Hankel matrices with the k-Jacobsthal and k-Jacobsthal Lucas numbers, J. Selcuk Univ. Natural and Appl. Sci. 3 (2014), no. 2, 35-42.
[35] P. Vasco, P. Catarino, H. Campos, A. P. Aires, and A. Borges, $k-$ Pell, $k-$ Pell-Lucas and modified $k-$ Pell numbers: some identities and norms of Hankel matrices, Int. J. Math. Anal. 9 (2015), no. 1, 31-37.

Yasemin Alp
Department of Education of Mathematics and Science, Selcuk University,
Konya, Turkey.
E-mail: yaseminalp66@gmail.com
E.Gokcen Kocer

Department of Mathematics-Computer Sciences, Necmettin Erbakan University,
Konya, Turkey.
E-mail: ekocer@erbakan.edu.tr

[^0]: Received May 31, 2022. Accepted March 29, 2023.
 2020 Mathematics Subject Classification. 11B37, 11B83, 15A18, 15A60.
 Key words and phrases. Gram matrix, Hankel matrix, Fibonacci numbers, Lucas numbers.
 *Corresponding author

