# WEAKLY BERWALD SPACE WITH A SPECIAL $(\alpha, \beta)$-METRIC 

PRADEEP KUMAR* AND AJAYKUMAR AR


#### Abstract

As a generalization of Berwald spaces, we have the ideas of Douglas spaces and Landsberg spaces. S. Bacso defined a weaklyBerwald space as another generalization of Berwald spaces. In 1972, Matsumoto proposed the $(\alpha, \beta)$ metric, which is a Finsler metric derived from a Riemannian metric $\alpha$ and a differential 1-form $\beta$. In this paper, we investigated an important class of $(\alpha, \beta)$-metrics of the form $F=\mu_{1} \alpha+\mu_{2} \beta+\mu_{3} \frac{\beta^{2}}{\alpha}$, which is recognized as a special form of the first approximate Matsumoto metric on an $n$-dimensional manifold, and we obtain the criteria for such metrics to be weakly-Berwald metrics. A Finsler space with a special $(\alpha, \beta)$-metric is a weakly Berwald space if and only if $B_{m}^{m}$ is a 1-form. We have shown that under certain geometric and algebraic circumstances, it transforms into a weakly Berwald space.


## 1. Introduction

In 1972 [13], Matsumoto introduced the concept of a $(\alpha, \beta)$-metric on a Finsler space $F^{n}=\left(M^{n}, F\right)$ and it has been studied by numerous authors [1, 4, $6,7,9,11,14,17]$. The study of several well-known metrics, such as the Randers metric and the Kropina metric, has significantly contributed to the expansion of Finsler geometry and its applications to relativity theory. A Finsler metric $F(x, y)$ is known as $(\alpha, \beta)$-metric, if $F$ is a positively homogeneous function of $\alpha$ and $\beta$ of degree one, where $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric and 1-form $\beta=b_{i}(x) y^{i}$ on $M^{n}$.

Let $F^{n}=\left(M^{n}, F\right)$ be an $n$-dimensional Finsler space, where $M^{n}$ be an $n$-dimensional differential manifold and fundamental function $F$. Let the fundamental tensor $g_{i j}=\dot{\partial}_{i} \dot{\partial}_{j} \frac{F^{2}}{2}$, where $\dot{\partial}_{i}$ represents $\frac{\partial}{\partial y^{i}}$ and we define $G_{i}$ as follows

$$
G_{i}=\frac{1}{4}\left(y^{r}\left(\partial_{r} \dot{\partial}_{i} F^{2}\right)-\partial_{i} F^{2}\right),
$$

Received December 6, 2022. Accepted February 9, 2023.
2020 Mathematics Subject Classification. 53B40, 53C60.
Key words and phrases. Finsler space, Berwald space, special $(\alpha, \beta)$-metric, Landsberg space, weakly Berwald space.
*Corresponding author
and $G^{i}=g^{i j} G_{j}$. Here $\partial_{i}$ means $\frac{\partial}{\partial x^{i}}$ and $g^{i j}$ is inverse of $g_{i j}$ fundamental tensor. The coefficients of $\left(G_{j k}^{i}, G_{j}^{i}\right)$ of the Berwald connection $B \Gamma$ are determined as $G_{j k}^{i}=\dot{\partial_{k}} G_{j}^{i}$ and $G_{j}^{i}=\dot{\partial_{j}} G^{i}$. A Berwald space is a Finsler space that satisfy the criterion $G_{i j k}^{h}=0$, which means that the Berwald connection coefficients $G_{i j}^{h}$ are functions of the position $\left(x^{i}\right)$ alone. Thus the equation $y_{r} G_{i j k}^{r}=0$ holds, so $2 G^{i}=G_{r s}^{i} y^{r} y^{s}$ are homogeneous polynomials of degree two in $\left(y^{i}\right)$, so $D^{i j}=$ $G^{i} y^{j}-G^{j} y^{i}$ are homogeneous polynomials of degree three in $\left(y^{i}\right)$. Then, as two extensions of Berwald spaces, we can study the concepts of Landsberg spaces and Douglas spaces. The third extension of Berwald spaces is the concept of weakly-Berwald spaces. As a result, if a Finsler space satisfies the criterion $G_{i j}=0$, it is referred to as a weakly-Berwald space.

Berwald space is a Finsler space, if $G_{j k}^{i}$ are the functions of position alone, that is, Berwald connection $B \Gamma$ is linear. If the $(h v)$-Ricci curvature tensor $G_{j k}=0$, a Finsler space is said to be a weakly Berwald space. The spray functions $G^{i}$ of a Finsler space with an $(\alpha, \beta)$-metric are given by $2 G^{i}=\gamma_{00}^{i}+$ $2 B^{i}$, where $\gamma_{j k}^{i}$ represents the Christoffel symbols in the associated Riemannian space $\left(M^{n}, \alpha\right)$. Then we have $G_{j k}^{i}=B_{j k}^{i}+\gamma_{j k}^{i}$ and $G_{j}^{i}=B_{j}^{i}+\gamma_{0 j}^{i}$, where $\dot{\partial_{k}} B_{j}^{i}=B_{j k}^{i}$ and $\dot{\partial} \dot{\partial}_{j}^{i}=B_{j}^{i}$. A Finsler space with an $(\alpha, \beta)$-metric is a weakly Berwald space if and only if $B_{m}^{m}=\frac{\partial B^{m}}{\partial y^{m}}$ is an one-form.

In [3], Bacso and Szilagyi proposed the concept of weakly-Berwald space as another extension of Berwald spaces as well as a necessary condition for the existence of a weakly Berwald Finsler space of Kropina type. L. Lee and M. Lee have investigated weakly Berwald spaces with special $(\alpha, \beta)$-metric in [12]. In 2004, Yoshikawa et al. [19] developed the conditions for generalised Kropina and Matsumoto spaces to be weakly-Berwald and Berwald spaces, respectively. In [18], Tayebi obtained a new class of weakly Berwald Finsler metric. Shanker and Choudhary has obtained the conditions for Finsler space with a second approximate Matsumoto metric to be weakly Berwald space in [16]. In [15], Narasimhamurthy has proved that under some conditions, a Finsler space with special $(\alpha, \beta)$-metric becomes a weakly-Berwald space. Recently, Khoshdani and Abazari [5] have discussed the characteristics of weakly Berwald space for fourth-root $(\alpha, \beta)$-metric. Pradeep and Ajaykumar [10] have examined the weakly Berwald space with special $(\alpha, \beta)$-metric.

In this paper, we extend the study on weakly Berwald spaces with a special form of the first approximate Matsumoto metric. We proposed a special $(\alpha, \beta)$ metric

$$
F=\mu_{1} \alpha+\mu_{2} \beta+\mu_{3} \frac{\beta^{2}}{\alpha}
$$

where $\mu_{1}, \mu_{2}$ and $\mu_{3}$ are constants in [8], which is a special form of the first approximate Matsumoto metric. Firstly, we gave a brief introduction to Berwald
and Weakly-Berwald space in section one. We have discussed the basic notations and conditions for a Finsler space $F^{n}$ with an $(\alpha, \beta)$-metric to be a weakly Berwald space in section two. Finally, we obtained the conditions for Finsler space to be weakly Berwald space with a special form of the first approximate Matsumoto metric $F$.

## 2. Weakly-Berwald space with respect to $(\alpha, \beta)$-metric

This section discusses the conditions for a Finsler space with a $(\alpha, \beta)$-metric to be a weakly-Berwald space.

Let $F^{n}=\left(M^{n}, F\right)$ be a Finsler space defined on $n$-dimensional differential manifold $M$ equipped with $(\alpha, \beta)$-metric $F(\alpha, \beta)$, where Riemannian metric $\alpha^{2}=a_{i j}(x) y^{i} y^{j}$ and one-form $\beta=b_{i}(x) y^{i}$. The symbol (; ) in this paper stands for $h$-covariant derivation in the space ( $M, \alpha$ ) with regard to the Riemannian connection, while $\gamma_{j k}^{i}$ stands for Christoffel symbols in the space $(M, \alpha)$. The notations are as follows [3]:

$$
\begin{aligned}
& i . \quad b^{2}=a^{r s} b_{r} b_{s}, \quad b^{i}=a^{i r} b_{r}, \\
& i i . \quad 2 r_{i j}=b_{j ; i}+b_{i ; j}, \quad 2 s_{i j}=b_{i ; j}-b_{j ; i}, \\
& \text { iii. } \quad r_{j}^{i}=a^{i r} r_{r j}, \quad s_{i}=b_{r} s_{i}^{r}, \quad s_{j}^{i}=s_{r j}, \quad r_{i}=b_{r} r_{i}^{r} .
\end{aligned}
$$

Now, we consider the function $G^{i}(x, y)$ of $F^{n}$ with an $(\alpha, \beta)$-metric. According to [13], they are being written in the form

$$
\begin{aligned}
2 G^{m} & =2 B^{m}+\gamma_{00}^{m} \\
B^{m} & =\frac{\alpha F_{\beta}}{F_{\alpha}} s_{0}^{m}+\frac{E^{*}}{\alpha} y^{m}-\frac{\alpha F_{\alpha \alpha}}{F_{\alpha}}\left(\frac{1}{\alpha} y^{m}-\frac{\alpha}{\beta} b^{m}\right) C^{*},
\end{aligned}
$$

where

$$
\begin{align*}
C^{*} & =\frac{\alpha \beta\left(r_{00} F_{\alpha}-2 \alpha s_{0} F_{\beta}\right)}{2\left(\beta^{2} F_{\alpha}+\alpha \gamma^{2} F_{\alpha \alpha}\right)}  \tag{2}\\
\gamma^{2} & =b^{2} \alpha^{2}-\beta^{2}, \quad E^{*}=\left(\frac{\beta F_{\beta}}{F}\right) C^{*}
\end{align*}
$$

and
(3) $F_{\alpha}=\frac{\partial F}{\partial \alpha}, \quad F_{\beta}=\frac{\partial F}{\partial \beta}, \quad F_{\alpha \alpha}=\frac{\partial^{2} F}{\partial \alpha^{2}}, \quad F_{\alpha \beta}=\frac{\partial^{2} F}{\partial \alpha \partial \beta}, \quad F_{\alpha \alpha \alpha}=\frac{\partial^{3} F}{\partial \alpha^{3}}$.

Since, $\gamma_{00}^{i}=\gamma_{j k}^{i}(x) y^{j} y^{k}$ are homogeneous polynomial in $\left(y^{i}\right)$ of degree two, it is well-known that a Finsler space with an $(\alpha, \beta)$ - metric is a Berwald space, if and only if $B^{m}$ are homogeneous polynomial in $\left(y^{i}\right)$ of degree two and Berwald connection $B \Gamma$ is linear.

Differentiating equation (1) by $y^{n}$ and contracting $m$ and $n$ in the obtained equation, we get

$$
\begin{align*}
B_{m}^{m}= & \left\{\dot{\partial}_{m}\left(\frac{\beta F_{\beta}}{\alpha F}\right) y^{m}+\frac{n \beta F_{\beta}}{\alpha F}-\dot{\partial}_{m}\left(\frac{\alpha F_{\alpha \alpha}}{F_{\alpha}}\right)\left(\frac{\beta y^{m}-\alpha^{2} b^{m}}{\alpha \beta}\right)\right\} C^{*}  \tag{4}\\
& -\frac{\alpha F_{\alpha \alpha}}{F_{\alpha}}\left\{\dot{\partial}_{m}\left(\frac{1}{\alpha}\right) y^{m}+\frac{1}{\alpha} \delta_{m}^{m}-\dot{\partial}_{m}\left(\frac{\alpha}{\beta}\right) b^{m}\right\} C^{*}+\dot{\partial}_{m}\left(\frac{\alpha F_{\beta}}{F_{\alpha}}\right) s_{0}^{m} \\
& +\left(\frac{\beta F_{\alpha} F_{\beta}-\alpha F F_{\alpha \alpha}}{\alpha F F_{\alpha}}\right)\left(\dot{\partial}_{m} C^{*}\right) y^{m}+\left(\frac{\alpha^{2} F_{\alpha \alpha}}{\beta F_{\alpha}}\right)\left(\dot{\partial}_{m} C^{*}\right) b^{m}
\end{align*}
$$

Since $F=F(\alpha, \beta)$ is a positively homogeneous function of $\alpha$ and $\beta$ of degree one, we have

$$
\begin{array}{r}
F_{\alpha} \alpha+F_{\beta} \beta=F, \quad F_{\alpha \alpha} \alpha+F_{\alpha \beta} \beta=0 \\
F_{\beta \alpha} \alpha+F_{\beta \beta} \beta=0, \quad F_{\alpha \alpha \alpha} \alpha+F_{\alpha \alpha \beta} \beta=-F_{\alpha \alpha} .
\end{array}
$$

Using the above inequalities and the homogeneity of $\left(y^{i}\right)$, we obtain the following

$$
\begin{equation*}
\dot{\partial}_{m}\left(\frac{\beta F_{\beta}}{\alpha F}\right) y^{m}=-\frac{\beta F_{\beta}}{\alpha F}, \tag{5}
\end{equation*}
$$

$$
\begin{align*}
\dot{\partial}_{m}\left(\frac{\alpha F_{\alpha \alpha}}{F_{\alpha}}\right)\left(\frac{\beta y^{m}-\alpha^{2} b^{m}}{\alpha \beta}\right)= & \frac{\gamma^{2}}{\left(\beta F_{\alpha}\right)^{2}}\left\{F_{\alpha} F_{\alpha \alpha}+\alpha F_{\alpha} F_{\alpha \alpha \alpha}\right.  \tag{6}\\
& \left.-\alpha\left(F_{\alpha \alpha}\right)^{2}\right\}
\end{align*}
$$

$$
\begin{equation*}
\left\{\dot{\partial}_{m}\left(\frac{1}{\alpha}\right) y^{m}+\frac{1}{\alpha} \delta_{m}^{m}-\dot{\partial}_{m}\left(\frac{\alpha}{\beta}\right) b^{m}\right\}=\frac{1}{\alpha \beta^{2}}\left\{\gamma^{2}+(n-1) \beta^{2}\right\} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\left(\dot{\partial}_{m} C^{*}\right) y^{m}=2 C^{*} \tag{8}
\end{equation*}
$$

$$
\begin{aligned}
\left(\dot{\partial}_{m} C^{*}\right) b^{m}= & \frac{1}{2 \alpha \beta \Omega^{2}}\left[\Omega \left\{\beta\left(\gamma^{2}+2 \beta^{2}\right) W+2 \alpha^{2} \beta^{2} F_{\alpha} r_{0}-\alpha \beta \gamma^{2} F_{\alpha \alpha}\right.\right. \\
& \left.r_{00}-2 \alpha\left(\beta^{3} F_{\beta}+\alpha^{2} \gamma^{2} F_{\alpha \alpha}\right) s_{0}\right\}-\alpha^{2} \beta W\left\{2 b^{2} \beta^{2} F_{\alpha}\right. \\
& \left.\left.-\gamma^{4} F_{\alpha \alpha \alpha}-b^{2} \alpha \gamma^{2} F_{\alpha \alpha}\right\}\right]
\end{aligned}
$$

$$
\begin{equation*}
\dot{\partial}_{m}\left(\frac{\alpha F_{\beta}}{F_{\alpha}}\right) s_{0}^{m}=\frac{\alpha^{2} F F_{\alpha \alpha} s_{0}}{\left(\beta F_{\alpha}\right)^{2}} \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
& W=\left(r_{00} F_{\alpha}-2 \alpha s_{0} F_{\beta}\right), \\
& \Omega=\left(\beta^{2} F_{\alpha}+\alpha \gamma^{2} F_{\alpha \alpha}\right), \quad \text { provided that }(\Omega \neq 0)  \tag{11}\\
& Y_{i}=a_{i r} y^{r}, \quad s_{00}=0, \quad b^{r} s_{r}=0, \quad a^{i j} s_{i j}=0 .
\end{align*}
$$

Substituting (2)-(3) and (5)-(10) into (4), we get

$$
\begin{align*}
B_{m}^{m}= & \frac{1}{2 \alpha F\left(\beta F_{\alpha}\right)^{2} \Omega^{2}}\left[2 \Omega^{2} A C^{*}+2 \alpha F \Omega^{2} B s_{0}+\alpha^{2} F F_{\alpha} F_{\alpha \alpha}\right.  \tag{12}\\
& \left.\left(C r_{00}+D s_{0}+E r_{0}\right)\right]
\end{align*}
$$

where

$$
\begin{aligned}
A= & (t+1) \beta^{2} F_{\alpha}\left(\beta F_{\alpha} F_{\beta}-\alpha F F_{\alpha \alpha}\right)+\alpha \gamma^{2} F\left\{\alpha\left(F_{\alpha \alpha}\right)^{2}-2 F_{\alpha} F_{\alpha \alpha}\right. \\
& \left.-\alpha F_{\alpha} F_{\alpha \alpha \alpha}\right\}, \\
B= & \alpha^{2} F F_{\alpha \alpha} \\
C=\beta & \beta \gamma^{2}\left\{-\beta^{2}\left(F_{\alpha}\right)^{2}+2 b^{2} \alpha^{3} F_{\alpha} F_{\alpha \alpha}-\alpha^{2} \gamma^{2}\left(F_{\alpha \alpha}\right)^{2}+\alpha^{2} \gamma^{2} F_{\alpha} F_{\alpha \alpha \alpha}\right\}, \\
D= & 2 \alpha\left\{\beta^{3}\left(\gamma^{2}-\beta^{2}\right) F_{\alpha} F_{\beta}-\alpha^{2} \beta^{2} \gamma^{2} F_{\alpha} F_{\alpha \alpha}-2 \alpha \beta \gamma^{2}\left(\gamma^{2}+2 \beta^{2}\right)\right. \\
& \left.F_{\beta} F_{\alpha \alpha}-\alpha^{3} \gamma^{4}\left(F_{\alpha \alpha}\right)^{2}-\alpha^{2} \beta \gamma^{4} F_{\beta} F_{\alpha \alpha \alpha}\right\}, \\
E= & 2 \alpha^{2} \beta^{2} F_{\alpha} \Omega .
\end{aligned}
$$

Summarizing the above, we have
Theorem 2.1. A Finsler space $F^{n}$ with an $(\alpha, \beta)$-metric is a weaklyBerwald space if $G_{m}^{m}=B_{m}^{m}+\gamma_{0 m}^{m}$ is a homogeneous polynomial in $\left(y^{m}\right)$ of degree one, where $B_{m}^{m}$ is given by equations (11) and (12), provided that $\Omega \neq 0$.

Lemma 2.2. [4] If $\alpha^{2} \equiv 0(\bmod \beta)$, that is, $a_{i j}(x) y^{i} y^{j}$ contains $b_{i}(x) y^{i}$ as a factor, then the dimension $n$ is equal to 2 and $b^{2}$ vanishes. In this case we have 1 -form $\delta=d_{i}(x) y^{i}$ satisfying $\alpha^{2}=\beta \delta$ and $d_{i} b^{i}=2$.

## 3. Finsler space with a special $(\alpha, \beta)$-metric

In this section, we investigated the Finsler space with the generalized $(\alpha, \beta)$ metric, which is a weakly Berwald space.

Let us consider $F^{n}=\left(M^{n}, F\right)$ be a Finsler space with generalized $(\alpha, \beta)$ metric

$$
\begin{equation*}
F(\alpha, \beta)=\mu_{1} \alpha+\mu_{2} \beta+\mu_{3} \frac{\beta^{2}}{\alpha} \tag{13}
\end{equation*}
$$

where $\mu_{1}, \mu_{2}$ and $\mu_{3}$ are constants. We now establish the conditions for $F^{n}$ with the metric (13) being a weakly Berwald space. For $F^{n}$ with metric (13), we have

$$
\begin{align*}
F_{\alpha} & =\mu_{1}-\mu_{3} \frac{\beta^{2}}{\alpha^{2}}, \quad F_{\beta}=\mu_{2}+2 \mu_{3} \frac{\beta}{\alpha},  \tag{14}\\
F_{\alpha \alpha} & =2 \mu_{3} \frac{\beta^{2}}{\alpha^{3}}, \quad F_{\alpha \alpha \alpha}=-6 \mu_{3} \frac{\beta^{2}}{\alpha^{4}} .
\end{align*}
$$

Substituting (14) into (1), we have

$$
\begin{align*}
B^{m}= & \frac{\alpha\left(\mu_{2} \alpha+2 \mu_{3} \beta\right)\left\{r_{00}\left(\mu_{1} \alpha^{2}-\mu_{3} \beta^{2}\right)-2 \alpha^{2} s_{0}\left(\mu_{2} \alpha+2 \mu_{3} \beta\right)\right\}}{2 \alpha\left(\mu_{1} \alpha^{2}+\mu_{2} \alpha \beta+\mu_{3} \beta^{2}\right)\left[\left(\mu_{1}+2 b^{2} \mu_{3}\right) \alpha^{2}-3 \mu_{3} \beta^{2}\right]} y^{m} \\
& -\frac{\mu_{3} \beta\left\{r_{00}\left(\mu_{1} \alpha^{2}-\mu_{3} \beta^{2}\right)-2 \alpha^{2} s_{0}\left(\mu_{2} \alpha+2 \mu_{3} \beta\right)\right\}}{\left(\mu_{1} \alpha^{2}-\mu_{3} \beta^{2}\right)\left[\left(\mu_{1}+2 b^{2} \mu_{3}\right) \alpha^{2}-3 \mu_{3} \beta^{2}\right]} y^{m}  \tag{15}\\
& +\frac{\mu_{3} \alpha^{2}\left[r_{00}\left(\mu_{1} \alpha^{2}-\mu_{3} \beta^{2}\right)-2 \alpha^{2} s_{0}\left(\mu_{2} \alpha+2 \mu_{3} \beta\right)\right]}{\left(\mu_{1} \alpha^{2}-\mu_{3} \beta^{2}\right)\left[\left(\mu_{1}+2 b^{2} \mu_{3}\right) \alpha^{2}-3 \mu_{3} \beta^{2}\right]} b^{m} \\
& +\frac{\alpha^{2}\left(\mu_{2} \alpha+2 \mu_{3} \beta\right)}{\left(\mu_{1} \alpha^{2}-\mu_{3} \beta^{2}\right)} s_{0}^{m} .
\end{align*}
$$

Again substituting (14) into (2), (4) and (12) in respective quantities, we get
(16)

$$
\begin{aligned}
& A= \frac{(t+1) \beta^{3}}{\alpha^{5}}\left(\mu_{1} \alpha^{2}-\mu_{3} \beta^{2}\right)\left[\left(\mu_{1} \alpha^{2}-\mu_{3} \beta^{2}\right)\left(\mu_{1} \alpha+2 \mu_{3} \beta\right)\right. \\
&\left.-2 \mu_{3} \beta\left(\mu_{1} \alpha^{2}+\mu_{2} \alpha \beta+\mu_{3} \beta^{2}\right)\right]+\frac{2 \gamma^{2} \beta^{2}}{\alpha^{5}} \\
&\left(\mu_{1} \alpha^{2}+\mu_{2} \alpha \beta+\mu_{3} \beta^{2}\right)\left(\mu_{1} \mu_{3} \alpha^{2}+\mu_{3} \beta^{2}\right), \\
& B= \frac{2 \mu_{3} \beta^{2}\left(\mu_{1} \alpha^{2}+\mu_{2} \alpha \beta+\mu_{3} \beta^{2}\right)}{\alpha^{2}}, \\
& C=\frac{\beta^{3} \gamma^{2}}{\alpha^{4}}\left[4 \mu_{3} b^{2} \alpha^{2}-\left(\mu_{1} \alpha^{2}-\mu_{3} \beta^{2}\right)^{2}-2 \gamma^{2}\left(3 \mu_{1} \mu_{3} \alpha^{2}-\mu_{3}^{2} \beta^{2}\right)\right], \\
& D= \frac{2 \beta^{3}}{\alpha^{2}}\left[\left(\gamma^{2}-\beta^{2}\right)\left(\mu_{1} \alpha^{2}-\mu_{3} \beta^{2}\right)\left(\mu_{2} \alpha+2 \mu_{3} \beta\right)\right. \\
&-2 \mu_{3} \beta \gamma^{2}\left(\mu_{1} \alpha^{2}-\mu_{3} \beta^{2}\right)-4 \mu_{3} \gamma^{2}\left(\gamma^{2}+2 \beta^{2}\right)\left(\mu_{2} \alpha+2 \mu_{3} \beta\right) \\
&\left.+2 \gamma^{4}\left(3 \mu_{2} \mu_{3} \alpha+4 \mu_{3}^{2} \beta\right)\right], \\
& E== \frac{2 \beta^{4}}{\alpha^{2}}\left(\mu_{1} \alpha^{2}-\mu_{3} \beta^{2}\right)\left[\left(\mu_{1}+2 b^{2} \mu_{3}\right) \alpha^{2}-3 \mu_{3} \beta^{2}\right], \\
& \Omega= \frac{\beta^{2}}{\alpha^{2}}\left[\left(\mu_{1}+2 b^{2} \mu_{3}\right) \alpha^{2}-3 \mu_{3} \beta^{2}\right], \\
& W= \frac{1}{\alpha^{2}}\left[r_{00}\left(\mu_{1} \alpha^{2}-\mu_{3} \beta^{2}\right)-2 \alpha^{2} s_{0}\left(\mu_{2} \alpha+2 \mu_{3} \beta\right)\right], \\
& C^{*}= \frac{\alpha\left[r_{00}\left(\mu_{1} \alpha^{2}-\mu_{3} \beta^{2}\right)-2 \alpha^{2} s_{0}\left(\mu_{2} \alpha+2 \mu_{3} \beta\right)\right]}{2 \beta\left[\left(\mu_{1}+2 b^{2} \mu_{3}\right) \alpha^{2}-3 \mu_{3} \beta^{2}\right]}, \\
& E^{*}= \frac{\alpha\left(\mu_{2} \alpha+2 \mu_{3} \beta\right)\left[r_{00}\left(\mu_{1} \alpha^{2}-\mu_{3} \beta^{2}\right)-2 \alpha^{2} s_{0}\left(\mu_{2} \alpha+2 \mu_{3} \beta\right)\right]}{2\left(\mu_{1} \alpha^{2}+\mu_{2} \alpha \beta+\mu_{3} \beta^{2}\right)\left[\left(\mu_{1}+2 b^{2} \mu_{3}\right) \alpha^{2}-3 \mu_{3} \beta^{2}\right]} .
\end{aligned}
$$

Substituting (16) into (11), we get

$$
\frac{B_{m}^{m}}{\alpha^{8}}\left[2 \beta^{6}\left(\mu_{1} \alpha^{2}-\mu_{3} \beta^{2}\right)^{2}\left(\mu_{1} \alpha^{2}+2 \mu_{3} b^{2} \alpha^{2}-3 \mu_{3} \beta^{2}\right)^{2}\left(\mu_{1} \alpha^{2} \mu_{2} \alpha \beta+\mu_{3} \beta^{2}\right)\right]
$$

$$
\begin{aligned}
& -\frac{1}{\alpha^{8}}\left[\beta ^ { 3 } \left\{\beta^{3}(t+1)\left(\mu_{1} \alpha^{2}-\mu_{3} \beta^{2}\right)\left(4 \mu_{3} \beta^{3}+3 \mu_{2} \mu_{3} \alpha \beta^{2}-\mu_{1} \mu_{2} \alpha^{3}\right)+2 \mu_{3} \beta^{2}\right.\right. \\
& \left.\left(\mu_{1} \alpha^{2}+\mu_{3} \beta^{3}\right)\left(\beta^{2}-b^{2} \alpha^{2}\right)\left(\mu_{1} \alpha^{2} \mu_{2} \alpha \beta+\mu_{3} \beta^{2}\right)\right\}\left(\mu_{1} \alpha^{2}+2 \mu_{3} b^{2} \alpha^{2}-3 \mu_{3} \beta^{2}\right) \\
& \left.\left\{r_{00}\left(\mu_{1} \alpha^{2}-\mu_{3} \beta^{2}\right)-2 \alpha^{2} s_{0}\left(\mu_{2} \alpha+2 \mu_{3} \beta\right)\right\}\right]-\frac{2 s_{0}}{\alpha^{8}}\left[2 \mu _ { 3 } \alpha ^ { 2 } \beta ^ { 6 } \left(2 \mu_{3} b^{2} \alpha^{2}+\mu_{1}\right.\right. \\
& \left.\left.\alpha^{2}-3 \mu_{3} \beta^{2}\right)^{2}\left(\mu_{1} \alpha^{2}+\mu_{2} \alpha \beta+\mu_{3} \beta^{2}\right)^{2}\right]-\frac{r_{00}}{\alpha^{8}}\left[2 \mu _ { 3 } \beta ^ { 5 } \left(2 \mu_{1} \mu_{3} b^{2} \alpha^{4}+2 \mu_{3}^{2} b^{2} \alpha^{2}\right.\right. \\
& \left.\beta^{2}+\mu_{1}^{2} \alpha^{4}-8 \mu_{1} \mu_{3} \alpha^{2} \beta^{2}+3 \mu_{3}^{2} \beta^{4}\right)\left(\beta^{2}-b^{2} \alpha^{2}\right)\left(\mu_{1} \alpha^{2}-\mu_{3} \beta^{2}\right)\left(\mu_{1} \alpha^{2}+\mu_{2} \alpha\right. \\
& \left.\left.\beta+\mu_{3} \beta^{2}\right)\right]-\frac{s_{0}}{\alpha^{8}}\left[4 \mu _ { 3 } \beta ^ { 5 } ( \mu _ { 1 } \alpha ^ { 2 } - \mu _ { 3 } \beta ^ { 2 } ) ( \mu _ { 1 } \alpha ^ { 2 } + \mu _ { 2 } \alpha \beta + \mu _ { 3 } \beta ^ { 2 } ) \left(2 \mu_{2} \mu_{3} b^{4} \alpha^{5}\right.\right. \\
& -16 \mu_{3}^{2} b^{2} \alpha^{2} \beta^{3}-13 \mu_{2} \mu_{3} b^{2} \alpha^{3} \beta^{2}+\mu_{1} \mu_{2} b^{2} \alpha^{5}+18 \mu_{3}^{2} \beta^{5}-2 \mu_{1} \mu_{3} \alpha^{2} \beta^{3}+12 \mu_{2} \\
& \left.\left.\mu_{3} \alpha \beta^{4}-2 \mu_{1} \mu_{2} \alpha^{3} \beta^{2}\right)\right]-\frac{r_{0}}{\alpha^{8}}\left[4 \mu _ { 3 } \beta ^ { 6 } ( \mu _ { 1 } \alpha ^ { 2 } - \mu _ { 3 } \beta ^ { 2 } ) ^ { 2 } \left(\mu_{1} \alpha^{2}+2 \mu_{3} b^{2} \alpha^{2}-3\right.\right. \\
& \left.\left.\mu_{3} \beta^{2}\right)\left(\mu_{1} \alpha^{2}+\mu_{2} \alpha \beta+\mu_{3} \beta^{2}\right)\right]=0 .
\end{aligned}
$$

Above equation can be re-written as

$$
\begin{align*}
& 2 B_{m}^{m}\left[a_{1} \alpha^{10} \beta+a_{2} \alpha^{9} \beta^{2}-a_{3} \alpha^{8} \beta^{3}-a_{4} \alpha^{7} \beta^{4}+a_{5} \alpha^{6} \beta^{5}+a_{6} \alpha^{5} \beta^{6}\right. \\
& \left.+a_{7} \alpha^{4} \beta^{7}-a_{8} \alpha^{3} \beta^{8}-a_{9} \alpha^{2} \beta^{9}+9 \mu_{2} \mu_{3}^{4} \alpha \beta^{10}+9 \mu_{3}^{5} \beta^{11}\right]-r_{00}[ \\
& a_{10} \alpha^{9} \beta+a_{11} \alpha^{8} \beta^{2}-a_{12} \alpha^{7} \beta^{3}+a_{13} \alpha^{6} \beta^{4}+a_{14} \alpha^{5} \beta^{5}+a_{15} \alpha^{4} \beta^{6} \\
& \left.+a_{16} \alpha^{3} \beta^{7}+a_{17} \alpha^{2} \beta^{8}+3 t \mu_{2} \mu_{3}^{4} \alpha \beta^{9}+3(1+4 t) \mu_{3}^{5} \beta^{10}\right]-2 s_{0}[ \\
& a_{18} \alpha^{10} \beta-a_{19} \alpha^{9} \beta^{2}+a_{20} \alpha^{8} \beta^{3}+a_{21} \alpha^{7} \beta^{4}+a_{22} \alpha^{6} \beta^{5}+a_{23} \alpha^{5} \beta^{6}  \tag{17}\\
& \left.+a_{24} \alpha^{4} \beta^{7}+(30 t-12) \mu_{2} \mu_{3}^{4} \alpha^{3} \beta^{8}+(24 t-t) \mu_{3}^{5} \alpha^{2} \beta^{9}\right]-2 r_{0}[ \\
& a_{25} \alpha^{10} \beta+a_{26} \alpha^{9} \beta^{2}-a_{27} \alpha^{8} \beta^{3}-a_{28} \alpha^{7} \beta^{4}+a_{29} \alpha^{6} \beta^{5}+a_{30} \alpha^{5} \beta^{6} \\
& \left.+a_{31} \alpha^{4} \beta^{7}-6 \mu_{2} \mu_{3}^{4} \alpha^{3} \beta^{8}-6 \mu_{3}^{5} \alpha^{2} \beta^{9}\right]=0,
\end{align*}
$$

where

$$
\begin{aligned}
& a_{1}=\mu_{1}^{5}+4 \mu_{1}^{4} \mu_{3} b^{2}+4 \mu_{1}^{3} \mu_{3}^{2} b^{4}, \\
& a_{2}=\mu_{1}^{4} \mu_{2}+4 \mu_{1}^{3} \mu_{2} \mu_{3} b^{2}+4 \mu_{1}^{2} \mu_{2} \mu_{3}^{2} b^{4}, \\
& a_{3}=7 \mu_{1}^{4} \mu_{3}+16 \mu_{1}^{3} \mu_{3}^{2} b^{2}+4 \mu_{1}^{2} \mu_{3}^{3} b^{4}, \\
& a_{4}=8 \mu_{1}^{3} \mu_{2} \mu_{3}+8 \mu_{1} \mu_{2} \mu_{3} b^{4}+20 \mu_{1}^{2} \mu_{2} \mu_{3}^{2} b^{2}, \\
& a_{5}=14 \mu_{1}^{3} \mu_{3}^{2}-4 \mu_{1} \mu_{3}^{4} b^{4}+8 \mu_{1}^{2} \mu_{3}^{2} b^{2}, \\
& a_{6}=22 \mu_{1}^{2} \mu_{2} \mu_{3}^{2}+4 \mu_{2} \mu_{3}^{4} b^{4}+28 \mu_{1} \mu_{2} \mu_{3}^{3} b^{2}, \\
& a_{7}=4 \mu_{3}^{5} b^{4}+16 \mu_{1} \mu_{3}^{4} b^{2}-2 \mu_{1}^{2} \mu_{3}^{2}, \\
& a_{8}=12 \mu_{2} \mu_{3}^{4} b^{2}+24 \mu_{1} \mu_{2} \mu_{3}^{3}, \\
& a_{9}=15 \mu_{1} \mu_{3}^{4}+12 \mu_{3}^{5} b^{2}, \\
& a_{10}=(1+t) \mu_{1}^{4} \mu_{2}+(2+t) \mu_{1}^{3} \mu_{2} \mu_{3}, \\
& a_{11}=4 \mu_{1}^{2} \mu_{3}^{3} b^{4}+8 \mu_{1}^{3} \mu_{3}^{2} b^{2},
\end{aligned}
$$

```
\(a_{12}=\mu_{1}^{3} \mu_{2} \mu_{3}+10 t \mu_{1}^{2} \mu_{2} \mu_{3}^{2} b^{4}+2 \mu_{1}^{2} \mu_{2} \mu_{3}^{2} b^{2}\),
\(a_{13}=4 \mu_{1}^{2} \mu_{3}^{3} b^{2}\left(5 b^{2}+2 t\right)-(16+4 t) \mu_{1}^{3} \mu_{3}^{2}\),
\(a_{14}=32 \mu_{1}^{2} \mu_{2} \mu_{3}^{2}+\mu_{1} \mu_{2} \mu_{3}^{2}\left(12 b^{4}-8 b^{2}\right)\),
\(a_{15}=4 \mu_{1} \mu_{3}^{4} b^{2}(1+4 t)+4 \mu_{1}^{2} \mu_{3}^{3}(5 t+8)\),
\(a_{17}=4 \mu_{3}^{5} b^{2}(1-2 t)-4 \mu_{1} \mu_{3}^{4}(4+7 t)\),
\(a_{18}=2 \mu_{1}^{4} \mu_{3}+4 \mu_{1}^{3} \mu_{3}^{2} b^{2}+4 \mu_{1} \mu_{2}^{2} \mu_{3}^{2} b^{4}-(1+t) \mu_{1}^{3} \mu_{2}^{2}-2(1+t) \mu_{1}^{2} \mu_{2}^{2} \mu_{3} b^{2}\),
\(a_{19}=2 t \mu_{1}^{3} \mu_{2} \mu_{3}+(4 t+22) \mu_{1}^{2} \mu_{2} \mu_{3}^{2} b^{2}\),
\(a_{20}=-12 \mu_{1}^{3} \mu_{3}^{2}-28 \mu_{1}^{2} \mu_{3}^{3} b^{2}+7(t+1) \mu_{1}^{2} \mu_{2}^{2} \mu_{3}+(60+8 t) \mu_{1} \mu_{2}^{2} \mu_{3}^{2}\),
\(a_{21}=(24 t+60) \mu_{1} \mu_{2} \mu_{3}^{3} b^{2}+(18 t+20) \mu_{1}^{2} \mu_{2} \mu_{3}^{2}\),
\(a_{22}=(10-6 t) \mu_{1}^{2} \mu_{3}^{3} b^{2}+(36+8 t) \mu_{1}^{2} \mu_{3}^{3}-15 t \mu_{1} \mu_{2}^{2} \mu_{3}^{2}+(16 t+12) \mu_{1} \mu_{3}^{4} b^{2}\),
\(a_{23}=(12-48 t) \mu_{1} \mu_{2} \mu_{3}^{3}-20 \mu_{2} \mu_{3}^{4} b^{2}\),
\(a_{24}=(12-16 t) \mu_{3}^{5} b^{2}-(24+32 t) \mu_{1} \mu_{3}^{4}+(9 t-3) \mu_{2}^{2} \mu_{3}^{3}\),
\(a_{25}=2 \mu_{1}^{4} \mu_{3}+4 \mu_{1}^{3} \mu_{3}^{2} b^{2}\),
\(a_{26}=2 \mu_{1}^{3} \mu_{2} \mu_{3}+4 \mu_{1}^{2} \mu_{2} \mu_{3}^{2} b^{2}\),
\(a_{27}=8 \mu_{1}^{3} \mu_{3}^{2}+4 \mu_{1}^{2} \mu_{3}^{3} b^{2}\),
\(a_{28}=10 \mu_{1}^{2} \mu_{2} \mu_{3}^{2}+8 \mu_{1} \mu_{2} \mu_{3}^{3} b^{2}\),
\(a_{29}=4 \mu_{1}^{2} \mu_{3}^{2}-4 \mu_{1} \mu_{3}^{4} b^{2}\),
\(a_{30}=4 \mu_{2} \mu_{3}^{4} b^{2}+14 \mu_{1} \mu_{2} \mu_{3}^{3}\),
\(a_{31}=4 \mu_{3}^{5}+8 \mu_{1} \mu_{3}^{4}\).
```

Now, we can assume that $F^{n}$ is a weakly Berwald space, then $B_{m}^{m}$ is $h p(1)$. Since, $\alpha$ is irrational in $\left(y^{i}\right)$, the equation (17) is divided into two equations as follows

$$
\begin{equation*}
K_{1} B_{m}^{m}+\beta L_{1} r_{00}+\alpha^{2} M_{1} s_{0}+\alpha^{2} N_{1} r_{0}=0 \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\beta K_{2} B_{m}^{m}+L_{2} r_{00}+\alpha^{2} \beta M_{2} s_{0}+\alpha^{2} \beta N_{2} r_{0}=0 \tag{19}
\end{equation*}
$$

where
$K_{1}=2 a_{1} \alpha^{10}-2 a_{3} \alpha^{8} \beta^{2}+2 a_{5} \alpha^{6} \beta^{4}+2 a_{7} \alpha^{4} \beta^{6}-2 a_{9} \alpha^{2} \beta^{8}+18 \mu_{3}^{5} \beta^{10}$,
$K_{2}=2 a_{2} \alpha^{8}-2 a_{4} \alpha^{6} \beta^{2}+2 a_{6} \alpha^{4} \beta^{4}+2 a_{17} \alpha^{2} \beta^{6}+18 \mu_{2} \mu_{3}^{4} \beta^{8}$,
$L_{1}=-\left\{a_{11} \alpha^{8}+a_{13} \alpha^{6} \beta^{2}+a_{15} \alpha^{4} \beta^{4}+a_{17} \alpha^{2} \beta^{6}+3(1+4 t) \mu_{3}^{5} \beta^{8}\right\}$,
$L_{2}=-\left\{a_{10} \alpha^{8}-a_{12} \alpha^{6} \beta^{2}+a_{14} \alpha^{4} \beta^{4}+a_{16} \alpha^{2} \beta^{6}+3 t \mu_{2} \mu_{3}^{4} \beta^{8}\right\}$,
$M_{1}=-2\left\{a_{18} \alpha^{8}+a_{20} \alpha^{6} \beta^{2}+a_{22} \alpha^{4} \beta^{4}+a_{24} \alpha^{2} \beta^{6}+3(8 t-2) \mu_{3}^{5} \beta^{8}\right\}$,
$M_{2}=-2\left\{-a_{19} \alpha^{6}+a_{21} \alpha^{4} \beta^{2}+a_{24} \alpha^{2} \beta^{4}+3(10 t-4) \mu_{2} \mu_{3}^{4} \beta^{6}\right\}$,
$N_{1}=-2\left\{a_{25} \alpha^{8}-a_{27} \alpha^{6} \beta^{2}+a_{29} \alpha^{4} \beta^{4}+a_{31} \alpha^{2} \beta^{6}-6 \mu_{3}^{5} \beta^{8}\right\}$,
$N_{2}=-2\left\{a_{26} \alpha^{6}-a_{28} \alpha^{4} \beta^{2}+a_{30} \alpha^{2} \beta^{4}-6 \mu_{2} \mu_{3}^{4} \beta^{6}\right\}$.
Eliminating $B_{m}^{m}$ from equations (18) and (19), we get

$$
\begin{equation*}
F r_{00}+\alpha^{2} \beta G s_{0}+\alpha^{2} \beta H r_{0}=0 \tag{20}
\end{equation*}
$$

where

$$
\begin{aligned}
& F=\beta^{2} K_{2} L_{1}-K_{1} L_{2} \\
& G=K_{2} M_{1}-K_{1} M_{2} \\
& H=K_{2} N_{1}-K_{1} N_{2}
\end{aligned}
$$

Equation (20) re-written as

$$
\begin{equation*}
\left(\frac{F}{\alpha^{2} \beta}\right) r_{00}+G s_{0}+H r_{0}=0 \tag{21}
\end{equation*}
$$

Since, only the term $\epsilon_{1} \alpha^{16}$ of $G s_{0}$ in (21) does not contain $\beta$, we must have $h p(16) V_{16}$ such that

$$
\begin{equation*}
\alpha^{16} s_{0}=\beta V_{16}, \tag{22}
\end{equation*}
$$

where $\epsilon_{1}=-4\left(a_{2} a_{18}-2 a_{1} a_{19}\right)$.
First consider that $\alpha^{2} \not \equiv 0(\bmod \beta)$ and $b^{2} \neq 0$. Equation (22) shows the existence of a function $q(x)$ satisfy $V_{16}=q \alpha^{16}$ and hence, $s_{0}=q \beta$. Then equation (21) reduces to

$$
\left(\frac{F}{\alpha^{2} \beta}\right) r_{00}+G q \beta+H r_{0}=0
$$

which implies that

$$
F r_{00}+G q \alpha^{2} \beta^{2}+\alpha^{2} \beta H r_{0}=0
$$

Only the term $2 a_{1} a_{10} \alpha^{18} r_{00}$ of the above relation does not contain $\beta$. Thus there exist $h p(19) U_{19}$ satisfying $2 a_{1} a_{10} \alpha^{18} r_{00}=\beta U_{19}$. It is a contradiction, which implies that $q=0$. Hence, we obtain $s_{0}=0, s_{j}=0$. Then equation (20) becomes

$$
\begin{equation*}
F r_{00}+\alpha^{2} \beta H r_{0}=0 \tag{23}
\end{equation*}
$$

Only the term $54(1+3 t) \mu_{2} \mu_{3}^{9} \beta^{18} r_{00}$ of (23) seemingly does not contain $\alpha^{2}$ and hence, we must have $h p(18) V_{18}$ such that $\beta^{18} r_{00}=\alpha^{2} V_{18}$. From $\alpha^{2} \not \equiv$ $0(\bmod \beta)$ there exist a function $g(x)$ such that

$$
\begin{equation*}
r_{00}=\alpha^{2} g(x) ; \quad r_{i j}=a_{i j} g(x) \tag{24}
\end{equation*}
$$

Transvecting above equation by $b^{i} y^{j}$, we have

$$
\begin{equation*}
r_{0}=\beta g(x) ; \quad r_{j}=b_{j} g(x) . \tag{25}
\end{equation*}
$$

Plugging (24) and (25) into (23), we get

$$
\begin{equation*}
g(x)\left(F+\beta^{2} H\right)=0 \tag{26}
\end{equation*}
$$

Assuming that $g(x) \neq 0$, we can deduce from equation (26) that

$$
F+\beta^{2} H=0
$$

The term $2 a_{1} a_{10} \alpha^{18} r_{00}$ of above relation does not contain $\beta$. Then there exist $h p(17) V_{17}$ satisfying $2 a_{1} a_{10} \alpha^{18}=\beta V_{17}$, where $V_{17}$ is $h p(17)$ this implies $V_{17}=$ 0 , provided that $b^{2} \neq 0$. Hence, $g(x)=0$ must hold and we get

$$
r_{00}=0, \quad r_{i j}=0 \quad \text { and } \quad r_{0}=0 ; \quad r_{j}=0 .
$$

Conversely, substituting $r_{00}=0, \quad s_{0}=0$, and $r_{0}=0$ into equation (17), we get $B_{m}^{m}=0$. That is, the Finsler space with (13) is a Weakly Berwald space.

Consequently, we assume that the Finsler space with (13) is a Berwald space. As a result of the preceding discussion, we have $r_{00}, s_{0}=0$ and $r_{0}=0$, indicating that the space is Weakly Berwald space. When we plug the above into (15), we get $B_{m}^{m}=0$, noting that the Finsler space with (13) is a Berwald space. Hence $s_{i j}$ is holds good.

Now, consider $\alpha^{2} \equiv 0(\bmod \beta)$, Lemma(2.2) shows that $t=2, b^{2}=0$ and $\alpha^{2}=\beta \delta, \delta=d_{i}(x) y^{i}$. From these conditions (20) is rewritten in the form below

$$
\begin{equation*}
F^{\prime} r_{00}+\beta \delta G^{\prime} s_{0}=0 \tag{27}
\end{equation*}
$$

where

$$
\begin{aligned}
F^{\prime}= & -2 a_{1} a_{10} \delta^{9}+\beta \delta^{8}\left(a_{1} a_{12}+2 a_{3} a_{10}+2 a_{2} a_{11}\right)+\beta^{2} \delta^{7}\left(2 a_{2} a_{13}-2 a_{4} a_{11}\right. \\
& \left.-2 a_{1} a_{14}-2 a_{3} a_{12}-2 a_{5} a_{10}\right)+\beta^{3} \delta^{6}\left(2 a_{2} a_{15}-2 a_{4} a_{13}+2 a_{6} a_{11}-2 a_{1}\right. \\
& \left.a_{16}+2 a_{3} a_{14}+2 a_{5} a_{12}-2 a_{7} a_{10}\right)+\beta^{4} \delta^{5}\left(2 a_{2} a_{17}-2 a_{4} a_{15}+2 a_{6} a_{13}-\right. \\
& \left.2 a_{2} a_{11}+2 a_{3} a_{16}+2 a_{5} a_{14}+2 a_{7} a_{12}+2 a_{9} a_{10}-6 \mu_{2} \mu_{3}^{4} a_{1}\right)+\beta^{5} \delta^{4}\left(2 a_{6}\right. \\
& a_{13}-2 a_{4} a_{17}-2 a_{8} a_{13}-2 a_{5} a_{16}-2 a_{9} a_{12}+30 \mu_{3}^{5} a_{2}+18 \mu_{2} \mu_{3}^{4} a_{11}+6 \\
& \left.\mu_{2} \mu_{3}^{4}\right)+\beta^{6} \delta^{3}\left(2 a_{6} a_{17}-2 a_{8} a_{15}-2 a_{7} a_{16}+2 a_{9} a_{12}-30 \mu_{3}^{5} a_{4}+18 \mu_{2}\right. \\
& \left.\mu_{3}^{4} a_{13}-6 \mu_{2} \mu_{3}^{4}+18 \mu_{3}^{5} a_{12}\right)+\beta^{7} \delta^{2}\left(2 a_{9} a_{16}-2 a_{2} a_{17}+30 \mu_{3}^{5} a_{6}+18 \mu_{2}\right. \\
& \left.\mu_{3}^{4} a_{15}-6 \mu_{2} \mu_{3}^{4}-18 \mu_{3}^{5} a_{12}\right)+\beta^{8} \delta\left(30 \mu_{3}^{5} a_{8}+18 \mu_{2} \mu_{3}^{4} a_{17}+6 \mu_{2} \mu_{3}^{4}-18\right. \\
& \left.\mu_{3}^{5} a_{16}\right)-216 \mu_{2} \mu_{3}^{9} \beta^{9}, \\
G^{\prime}= & 4 \delta^{9}\left(a_{1} a_{19}-a_{2} a_{18}\right)+4 \beta \delta^{7}\left(a_{4} a_{18}-a_{2} a_{20}-a_{1} a_{21}-a_{3} a_{19}\right)+4 \beta^{2} \delta^{6}( \\
& \left.a_{4} a_{20}-a_{2} a_{22}-a_{6} a_{18}-a_{6} a_{18}-a_{1} a_{24}+a_{3} a_{21}+a_{5} a_{19}\right)+4 \beta^{3} \delta^{5}\left(a_{4}\right. \\
& \left.a_{22}-a_{2} a_{24}-a_{6} a_{20}+a_{8} a_{18}+a_{3} a_{24}-a_{5} a_{21}+a_{7} a_{19}-18 \mu_{2} \mu_{3}^{4} a_{1}\right)+ \\
& 4 \beta^{4} \delta^{4}\left(a_{4} a_{24}-a_{6} a_{22}+a_{8} a_{20}-a_{5} a_{24}-a_{7} a_{21}-a_{9} a_{19}+18 \mu_{2} \mu_{3}^{4} a_{3}-\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.9 \mu_{2} \mu_{3}^{4} a_{18}-a 8 \mu_{3}^{5} a_{2}\right)+4 \beta^{5} \delta^{3}\left(a_{8} a_{22}-a_{6} a_{24}-a_{7} a_{24}+a_{9} a_{21}+18 \mu_{3}^{5}\right. \\
& \left.a_{4}-18 \mu_{2} \mu_{3}^{4} a_{5}-9 \mu_{2} \mu_{3}^{4} a_{20}+9 \mu_{3}^{5} a_{19}\right)+4 \beta^{6} \delta^{2}\left(a_{8} a_{24}+9 a_{9} a_{24}-18\right. \\
& \left.\mu_{3}^{5} a_{6}-18 \mu_{2} \mu_{3}^{4} a_{7}-9 \mu_{2} \mu_{3}^{4}-9 \mu_{3}^{5} a_{12}\right)+4 \beta^{7} \delta\left(18 \mu_{3}^{5} a_{8}+18 \mu_{2} \mu_{3}^{4} a_{9}-\right. \\
& \left.9 \mu_{2} \mu_{3}^{4} a_{24}-9 \mu_{3}^{5} a_{24}\right)+972 \mu_{2} \mu_{3}^{5} \beta^{8} .
\end{aligned}
$$

Since, only the term $216 \mu_{2} \mu_{3}^{9} \beta^{9} r_{00}$ of $F^{\prime} r_{00}+\beta \delta G^{\prime} s_{0}$ in (27) seemingly does not contain $\delta$. We must have $h p(1) V_{1}$ such that $r_{00}=\delta V_{1}$. We have $s_{0}=0$, $s_{j}=0$, now (27) becomes

$$
F^{\prime} r_{00}=0
$$

which implies

$$
r_{00}=0, \quad r_{i j}=0 \quad \text { and } \quad r_{0}=0 ; \quad r_{j}=0 .
$$

Consequently from $r_{00}=0, r_{0}=0$ and $s_{0}=0$, we have $B_{m}^{m}=0$. Thus the space with (13) is weakly Berwald space. Hence we state the following

Theorem 3.1. Let $F$ be a Finsler space with $(\alpha, \beta)$-metric (13) is weakly Berwald space if and only if the following properties satisfies
i. $\alpha^{2} \not \equiv 0(\bmod \beta)$ implies $r_{i j}=0$ and $s_{j}=0$,
ii. $\alpha^{2} \equiv 0(\bmod \beta)$ implies $t=2, b^{2}=0$ and $r_{i j}=0, s_{j}=0$ are satisfied, where $\alpha^{2}=\beta \delta, \delta=d_{i}(x) y^{i}$.

## 4. Conclusion

In this article, we look at a Finsler space where the ( $h v$ )-Ricci tensor $G_{i j}$ vanishes but the $(h v)$-curvature tensor $G_{i j k}^{h}$ does not always equal to zero. The primary goal of this research is to present an example of a weakly Berwald Finsler space and to show a required condition for the existence of a weakly Berwald Finsler space of the $(\alpha, \beta)$-metric

$$
F(\alpha, \beta)=\mu_{1} \alpha+\mu_{2} \beta+\mu_{3} \frac{\beta^{2}}{\alpha}
$$

## References

[1] AR AjayKumar and Pradeep Kumar, On the conformal transformation of Douglas space of second kind with generalized ( $\alpha, \beta$ )-metric, Advances in Dynamical Systems and Applications 17 (2022), no. 1, 299-310.
[2] A. V. Arhangel'skii, Bicompact sets and the topology of spaces, Soviet Mathematics Doklady 4 (1963), 561-564.
[3] S. Bacso and B. Szilagyi, On a weakly Berwald Finsler space of Kropina type, Mathematica Pannonica 13 (2002), no. 1, 91-95.
[4] M. Hashiguchi, On some special ( $\alpha, \beta$ ) metrics, Rep. Fac. Sci. Kagoshima University 8 (1975), 39-46.
[5] T. R. Khoshdani and N. Abazari, Charactarization of weakly Berwald fourth-root metrics, Ukrainian Mathematical Journal 71 (2019), no. 7, 1115-1138.
[6] Pradeep Kumar, S. K. Narasimhamurthy, H. G. Nagaraja, and S. T. Aveesh, On a special hypersurface of a Finsler space with ( $\alpha, \beta$ )-metric, Tbilisi Mathematical Journal 2 (2009), 51-60.
[7] Pradeep Kumar, T. S. Madhu, and B. R. Sharath, On Ricci tensors of a Finsler space with special ( $\alpha, \beta$ )-metric, J. T. S. 13 (2019), 73-80.
[8] Pradeep Kumar, T. S. Madhu, and B. R. Sharath, Projective changes between generalized ( $\alpha, \beta$ )-metric and Randers metric, Advances in Pure Mathematics 10 (2020), no. 5, 312-321.
[9] Pradeep Kumar and AR Ajaykumar, Locally dually flat and reversible geodesics of a Finsler space with generalized ( $\alpha, \beta$ )-metric, Stochastic Modeling and Applications 26 (2022), no. 3, 640-652.
[10] Pradeep Kumar and AR Ajaykumar, New class of weakly Berwald space with a special ( $\alpha, \beta$ )-metric, Ganita 72 (2022), no. 1, 335-344.
[11] Pradeep Kumar and AR Ajaykumar, Reversible geodesics of a Finsler space with generalized ( $\alpha, \beta$ )-metric, Gulf Journal of Mathematics 14 (2023), no. 1, 125-138.
[12] I. Y. Lee and M. H. Lee, On weakly-Berwald spaces of special ( $\alpha, \beta$ )-metrics, Bulletin of the Korean Mathematical Society 43 (2006), no. 2, 425-441.
[13] M. Matsumoto, On c-reducible Finsler spaces, Tensor NS 24 (1972), 29-37.
[14] M. Matsumoto, Theory of Finsler spaces with ( $\alpha, \beta$ )-metric, Reports on Mathematical Physics 31 (1992), no. 1, 43-83.
[15] S. K. Narasimhamurthy and M. Ramesha, Projectively flat Finsler space of Douglas type with weakly-Berwald ( $\alpha, \beta$ )-metric, International Journal of Pure Mathematical Sciences 18 (2017), 1-12.
[16] G. Shanker and D. Choudhary, On a new class of weakly Berwald spaces with ( $\alpha, \beta$ )metric, British Journal of Mathematics and Computer Science 14 (2016), no. 1, 1-13.
[17] C. Shibata, On Finsler space with an ( $\alpha, \beta$ )-metric, J. Hokkaido Univ. Ed. 35 (1984), 1-16.
[18] A. Tayebi, A class of weakly Berwald Finsler metrics, Mathematica Pannonica 2015 (2014), 63-74.
[19] R. Yoshikawa, K. Okubo, and M. Matsumoto, The conditions for some ( $\alpha, \beta$ )-metric spaces to be weakly-Berwald spaces, Tensor NS 65 (2004), no. 3, 277-290.

Pradeep Kumar
Department of Mathematics, Presidency University,
Bengaluru 560064, INDIA.
E-mail: pradimath@gmail.com

AJAYKUMAR AR<br>Department of Mathematics, KNS Institute of Technology, Bengaluru 560064, INDIA.<br>E-mail: ajayabhi219@gmail.com

