DOI QR코드

DOI QR Code

Behavior of short columns constructed using engineered cementitious composites under seismic loads

  • Syed Humayun Basha (College of Civil Engineering, Huaqiao University) ;
  • Xiaoqin Lian (College of Civil Engineering, Huaqiao University) ;
  • Wei Hou (College of Civil Engineering, Huaqiao University) ;
  • Pandeng Zheng (College of Civil Engineering, Huaqiao University) ;
  • ZiXiong Guo (College of Civil Engineering, Huaqiao University)
  • Received : 2022.04.25
  • Accepted : 2023.08.31
  • Published : 2023.09.10

Abstract

The present research reports the application of engineered cementitious composites (ECC) as an alternative to conventional concrete to improve the seismic behavior of short columns. Experimental and finite element investigation was conducted by testing five reinforced engineered cementitious composite (RECC) concrete columns (half-scale specimens) and one control reinforced concrete (RC) specimen for different shear-span and transverse reinforcement ratios under cyclic lateral loads. RECC specimens with higher shear-span and transverse reinforcement ratios demonstrated a significant effect on the column lateral load behavior by improving ductility (>5), energy dissipation capacity (1.2 to 4.1 times RC specimen), gradual strength degradation (ultimate drift >3.4%), and altering the failure mode. The self-confinement effect of ECC fibers maintained the integrity in the post-peak region and reserved the transmission of stress through fibers without noticeable degradation in strength. Finite element modeling of RECC specimens under monotonic incremental loads was carried out by adopting simplified constitutive material models. It was apprehended that the model simulated the global response (strength and stiffness) and damage crack patterns reasonably well.

Keywords

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Grant No. 52178210), the Natural Science Foundation of Fujian Province, China (Grant No. 2021J01285 and 2021J05051), Construction Science and Technology Project of Xiamen City (Grant No.2021-1-7) and Collaborative Innovation Platform Project of FuzhouXiamen-Quanzhou Self-Innovation Zone (Grant No. 3502ZCQXT2022002).

References

  1. ACI 318 (2014), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute; Farmington Hills, MI, USA.
  2. ASTM C192/C192M (2018), Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, Philadelphia, USA.
  3. ATC (1999), Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings-Basic Procedures Manual, Applied Technology Council; FEMA 306. Washington, DC, USA.
  4. Basha, S.H. and Kaushik, H.B. (2019), "Investigation on improving the shear behavior of columns in masonry infilled RC frames under lateral loads", Bull. Earthq. Eng., 17, 3995-4026 https://doi.org/10.1007/s10518-019-00622-3
  5. Basha, S.H., Surendran, S. and Kaushik, H.B. (2020), "Empirical models for lateral stiffness and strength of masonry-infilled RC frames considering the influence of openings", J. Struct. Eng., 146(4), 04020021-1. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002562.
  6. Caglar, N. and Mutlu, M. (2009), "Failure analysis of reinforced concrete frames with short column effect", Comput. Concrete, 6(5), 403-419. https://doi.org/10.12989/cac.2009.6.5.403.
  7. Campione, G. and Scibilia, N. (2002), "Beam-column behavior of concrete filled steel tubes", Steel Compos. Struct., 2(4), 259-276. https://doi.org/10.12989/scs.2002.2.4.259.
  8. Cervenka, V. and Cervenka, J. (2015), "ATENA program documentation user manual for ATENA 2d", Cervenka Consulting, Prague, Czech Republic. http://www.cervenka.cz.
  9. Deng, M.K., Zhang, Y.X. and Li, Q.Q. (2018), "Shear strengthening of RC short columns with ECC jacket: cyclic behavior tests", Eng. Struct., 160, 535-545. https://doi.org/10.1016/j.engstruct.2018.01.061.
  10. EERI (2021), Concrete buildings damaged in Earthquakes: A Collection of Case Studies, 1999 Kocaeli Earthquake Turkey, 2021. https://db.concretecoalition.org/building/135#tabs-1.
  11. Eurocode 2 (2004), Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, European Committee for Standardization; Eurocode 2, Brussels, Belgium.
  12. Feng, P., Cheng, S., Bai, Y. and Ye, L.P. (2014), "Mechanical behavior of concrete-filled square steel tube with FRP-confined concrete core subjected to axial compression", Compos. Struct., 123, 312-324. https://doi.org/10.1016/j.compstruct.2014.12.053.
  13. GB 50010 (2011), Code for Design of Concrete Structure, China Architecture & Building Press; Beijing, China.
  14. Gencturk, B., Elnashai, A.S., Lepech, M.D. and Billington, S. (2013), "Behavior of concrete and ECC structures under simulated earthquake motion", J. Struct. Eng., 139(3), 389-399. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000667.
  15. Hind, M.K.H., Ozakca, M. and Ekmekyapar, T. (2017), "Nonlinear FE modelling and parametric study on flexural performance of ECC beams", Struct. Eng. Mech., 62(1), 21-31. https://doi.org/10.12989/sem.2017.62.1.021.
  16. Hou, W., Xu, S.L., Ji, D.S., Li, Q.H. and Lin, G. (2018), "Cyclic performance of steel plate-reinforced high toughness-concrete coupling beams with different span-to-depth ratios", J. Struct. Eng., 144(10), 04018170. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002175.
  17. Hou, W., Xu, S.L., Ji, D.S., Li, Q.H. and Zhang, P. (2019), "Seismic performance of steel plate reinforced high toughness concrete coupling beams with different steel plate ratios", Compos. Part B, 159, 199-210. https://doi.org/10.1016/j.compositesb.2018.09.100.
  18. ISO 16670 (2003), Timber Structures - Joints Made with Mechanical Fasteners - Quasi-Static Reversed-Cyclic Test Method, International Organization for Standardization; Switzerland.
  19. JC/T 2461 (2018), Standard Test Method for the Mechanical Properties of Ductile Fiber Reinforced Cementitious Composites, China Architecture & Building Press, Beijing, China (in Chinese).
  20. JGJ/T 101 (2015), Specification for Seismic Test of Buildings, China Architecture & Building Press; Beijing, China.
  21. Kharoob, O.F. and Taman M.H. (2017), "Behavior of fibre reinforced cementitious material-filled steel tubular columns", Steel Compos. Struct., 23(4), 465-472. https://doi.org/10.12989/scs.2017.23.4.465.
  22. Kocak, A. (2013), "The effect of short columns on the performance of existing buildings", Struct. Eng. Mech., 46(4), 505-518. https://doi.org/10.12989/sem.2013.46.4.505.
  23. Kwan, A.K.H. and Zhao, Z.Z. (2002), "Cyclic behaviour of deep reinforced concrete coupling beams", Proceedings of the Institution of Civil Engineers Structures and Buildings, 152(3), 283-293. https://doi.org/10.1680/stbu.2002.152.3.283.
  24. Li, J., Wang, W., Wu, C., Liu, Z. and Wu, P. (2022), "Impact response of ultra-high performance fiber-reinforced concrete filled square double-skin steel tubular columns", Steel Compos. Struct., 42(3), 325-351. https://doi.org/10.12989/scs.2022.42.3.325.
  25. Li, V.C. and Wu, H.C. (1992), "Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites", Appl. Mech. Rev., 45(8), 390. https://doi.org/10.1115/1.3119767.
  26. Li, V.C., Mishra, D.K. and Wu, H.C. (1995), "Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites", Mater. Struct., 28(10), 586-595. https://doi.org/10.1007/BF02473191.
  27. Li, X.L., Wang, J., Bao, Y. and Chen, G.D. (2017), "Cyclic behavior of damaged reinforced concrete columns repaired with high-performance fiber-reinforced cementitious composite", Eng. Struct., 136, 26-35. https://doi.org/10.1016/j.engstruct.2017.01.015
  28. Lieping, Y., Xinzheng, L., Zhe, Q. and Peng, F. (2008), "Analysis on building seismic damage in the Wenchuan earthquake", Proceedings of 14th World Conference on Earthquake Engineering, Beijing, China, October.
  29. Liu, J., Wang, W. and Zhang, X.D. (2009), "Seismic behavior of reinforced concrete and steel reinforced concrete ultra-short columns", J. Southeast China Univ., 9(6), 1193-1199. https://doi.org/10.3969/j.issn.1001-0505.2009.06.021.
  30. Maalej, M. and Li, V.C. (1994), "Flexural/tensile-strength ratio in engineered cementitious composites", J. Mater. Civil Eng., 6(4), 513-528. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:4(513).
  31. Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2007), "OpenSees command language manual", Pacific Earthquake Engineering Research Center, University of California at Berkeley, Berkeley. https://opensees.berkeley.edu/wiki/index.php/Getting_Started.
  32. Moretti, M. and Tassios, T.P. (2007), "Behaviour of short columns subjected to cyclic shear displacements: Experimental results", Eng. Struct., 29(8), 2018-2029. https://doi.org/10.1016/j.engstruct.2006.11.001.
  33. Osorio, L.I., Paultre, P., Eid, R. and Proulx, J. (2014), "Seismic behavior of synthetic fiber-reinforced circular columns", ACI Struct. J., 111(1), 189-200. https://doi.org/10.14359/51686517.
  34. Pang, Y.T., Cai, L., Ouyang, H. and Zhou, X.Y. (2019), "Seismic performance assessment of different fibers reinforced concrete columns using incremental dynamic analysis", Construct. Build. Mater., 203, 241-257. https://doi.org/10.1016/j.conbuildmat.2019.01.087.
  35. Pardalopoulos, S.J., Thermou, G.E. and Pantazopoulou, S.J. (2016), "Screening criteria to identify brittle RC structural failures in earthquakes", Bull. Earthq. Eng., 11, 607-636. https://doi.org/10.1007/s10518-012-9390-7.
  36. Parra-Montesinos, G. and Wight, J.K. (2000), "Seismic response of exterior RC column-to-steel beam connections", J. Struct. Eng., 126(10),1113-1121. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1113).
  37. Pereira, M.F., Nardin, S.D. and Debs, A.L.H.C.El. (2020), "Partially encased composite columns using fiber reinforced concrete: experimental study", Steel Compos. Struct., 34(6), 909-927. https://doi.org/10.12989/scs.2020.34.6.909.
  38. Qudah, S. and Maalej, M. (2014), "Application of engineered cementitious composites (ECC) in interior beam-column connections for enhanced seismic resistance", Eng. Struct., 69, 235-245. https://doi.org/10.1016/j.engstruct.2014.03.026.
  39. Ricles, J.M. and Paboojian, S.D. (1994), "Seismic performance of steel-encased composite columns", J. Struct. Eng., 120(8), 2474-2494. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:8(2474).
  40. Said, S.H., Razak, H.A. and Othman, I. (2015), "Flexural behavior of engineered cementitious composite (ECC) slabs with polyvinyl alcohol fibers", Construct. Build. Mater., 75, 176-188. https://doi.org/10.1016/j.conbuildmat.2014.10.036.
  41. Shi, Q.X., Yang, W.X., Wang, Q.W., Tian, Y., Zhang, X.H., Jiang, W.S., Bai, L.G. and Zhao, Q.C. (2012), "Experimental research on seismic behavior of high-strength concrete short columns with high-strength stirrups", J. Build. Struct., 33(9), 49-58.
  42. Wu, C., Pan, Z.F., and Mo, Y.L., Li, M. and Meng, S. (2018), "Modeling of shear-critical reinforced engineered cementitious composites members under reversed cyclic loading", Struct. Concrete, 19, 1689-1701. https://doi.org/10.1002/suco.201700231.
  43. Xu, L., Pan, J.L. and Chen, J.H. (2017), "Mechanical behavior of ECC and ECC/RC composite columns under reversed cyclic loading", J. Mater. Civil Eng., 29(9), 04017097. https://doi.org/10.1061/(asce)mt.1943-5533.0001950.
  44. Xu, S.L., Hou, L.J. and Zhang, X.F. (2012), "Flexural and shear behaviors of reinforced ultrahigh toughness cementitious composite beams without web reinforcement under concentrated load", 39, 176-186. https://doi.org/10.1016/j.engstruct.2012.01.011.
  45. Xu, S.L., Li, Q.H. and Song, S.D. (2010), "Durability performance of RUHTCC beam under flexural load", Int. J. Struct. Eng., 1(2), 172-187. https://doi.org/10.1504/ijstructe.2010.031484.
  46. Zheng, Y., Zhang, L.F. and Xia, L.P. (2018), "Investigation of the behaviour of flexible and ductile ECC link slab reinforced with FRP", Construct. Build. Mater., 166, 694-711. https://doi.org/10.1016/j.conbuildmat.2018.01.188.