DOI QR코드

DOI QR Code

Control method of PV hybrid systems with grid-connected MMC to overcome uneven irradiances

  • Thai Nguyen Tran (Department of Electrical Engineering, Jeju National University) ;
  • Jihun So (Department of Electrical Engineering, Jeju National University) ;
  • Changwan Jin (Department of Electrical Engineering, Jeju National University) ;
  • Yeong‑Jun Choi (Department of Electrical Engineering, Jeju National University)
  • Received : 2023.02.16
  • Accepted : 2023.04.05
  • Published : 2023.09.20

Abstract

This paper proposes a modified structure and its control method for a hybrid modular multilevel converter (MMC)-based photovoltaic (PV)-battery energy storage system (BESS). The modified structure consists of PV arrays that are directly connected with sub-modules SMs, and batteries that are interfaced with the DC port of the SMs using a DC/DC converter. The control strategy implements an independent maximum power point tracking (MPPT) control for each of the PV arrays by individual SM voltage control for variable conditions. Embedded BESSs work as power and voltage compensators for the arms, and they are able to eliminate the weakness of the PV plant such as power mismatching and unsmooth power under variable illumination and partial shading. This is accomplished by average arm power control and moving average filter for the BESSs in each arm. Moreover, due to the contribution of the BESSs, it offers a lower total harmonic distortion (THD) under variable working conditions. The effectiveness and robustness of the method are verified by simulation results, which were obtained by conducting time-domain simulations in PSCAD/EMTDC under variable conditions.

Keywords

Acknowledgement

This research was supported by the 2022 scientific promotion program funded by Jeju National University

References

  1. IEA.: Net Zero by 2050 A Roadmap for the Global Energy Sector. Accessed: 2021. Available: https://www.iea.org/reports/net-zero-by-2050
  2. Deshpande, S., Bhasme, N.R.: A review of topologies of inverter for grid connected PV systems. 2017 Innovations in Power and Advanced Computing Technologies (i-PACT). 21-22 April 2017 2017. pp. 1-6. https://doi.org/10.1109/IPACT.2017.8245191
  3. Blaabjerg, F.: Control of Power Electronic Converters and Systems, vol. 3. Academic Press, New York (2021)
  4. Scholten, D.M., Ertugrul, N., Soong, W. L.: Micro-inverters in small scale PV systems: a review and future directions. 2013 Australasian Universities Power Engineering Conference (AUPEC). 29 Sept.-3 Oct. 2013 2013. pp. 1-6. https://doi.org/10.1109/AUPEC.2013.6725465
  5. Abdel-Rahim, O., Alamir, N., Orabi, M., Ismeil, M.: Fixed-frequency phase-shift modulated PV-MPPT for LLC resonant converters. J. Power Electron. 20, 279-291 (2020). https://doi.org/10.1007/s43236-019-00001-w
  6. Foureaux, N., Machado, A., E, S., Pires, I., Brito, J., and Braz Cardoso, F.: Central inverter topology issues in large-scale photovoltaic power plants: Shading and system losses. 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). 14-19 June 2015 2015. pp. 1-6. https://doi.org/10.1109/PVSC.2015.7355828
  7. Jana, J., Saha, H., and Das Bhattacharya, K.: A review of inverter topologies for single-phase grid-connected photovoltaic systems. Renewable and Sustainable Energy Reviews. vol. 72, pp. 1256-1270 (2017). https://doi.org/10.1016/j.rser.2016.10.049
  8. Bayat, H., Yazdani, A.: A power mismatch elimination strategy for an MMC-based photovoltaic system. IEEE Trans. Energy Convers. 33(3), 1519-1528 (2018). https://doi.org/10.1109/TEC.2018.2819982
  9. Rong, F., Gong, X., Huang, S.: A novel grid-connected PV system based on MMC to get the maximum power under partial shading conditions. IEEE Trans. Power Electron. 32(6), 4320-4333 (2017). https://doi.org/10.1109/TPEL.2016.2594078
  10. Khazaei, J., Pavlak, G., Lee, B., Elsenbaty, M.: A Novel Application of Modular Multi-Level Converters for Partially Shaded PV Systems. 2019 IEEE Texas Power and Energy Conference (TPEC). 7-8 Feb. 2019 2019. pp. 1-6. https://doi.org/10.1109/TPEC.2019.8662179
  11. Mohamed, F., Wasti, S., Afshar, S., Macedo, P., Disfani, V.: MMC-Based Distributed Maximum Power Point Tracking for Photovoltaic Systems. 2020 IEEE Power & Energy Society General Meeting (PESGM). 2-6 Aug. 2020 2020. pp. 1-5. https://doi.org/10.1109/PESGM41954.2020.9282015
  12. Rivera, S., Wu, B., Lizana, R., Kouro, S., Perez, M., Rodriguez, J.: Modular multilevel converter for large-scale multistring photovoltaic energy conversion system. 2013 IEEE Energy Conversion Congress and Exposition. 15-19 Sept. 2013 2013. pp. 1941-1946. https://doi.org/10.1109/ECCE.2013.6646945
  13. Wang, K., Wu, X., Deng, F., Liu, F.: A dynamic power distribution strategy for large-scale cascaded photovoltaic systems. J. Power Electron. 17, 1317-1326 (2017). https://doi.org/10.6113/JPE.2019.17.5.1317
  14. Bayat, H., Yazdani, A.: A hybrid MMC-based photovoltaic and battery energy storage system. IEEE Power Energy Technol. Syst. J. 6(1), 32-40 (2019). https://doi.org/10.1109/JPETS.2019.2892418
  15. Zhang, L., Zhang, Z., Qin, J., Shi, D., Wang, Z.: Design and Performance Evaluation of the Modular Multilevel Converter (MMC)-based Grid-tied PV-Battery Conversion System. 2018 IEEE Energy Conversion Congress and Exposition (ECCE). 23-27 Sept. 2018 2018. pp. 2649-2654. https://doi.org/10.1109/ECCE.2018.8558443
  16. Alam, M. J. E. and Saha, T. K.: Cycle-life degradation assessment of Battery energy storage systems caused by solar PV variability. 2016 IEEE Power and Energy Society General Meeting (PESGM). 17-21 July 2016 2016. pp. 1-5. https://doi.org/10.1109/PESGM.2016.7741532
  17. IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, 2014. https://doi.org/10.1109/IEEESTD.2014.6826459
  18. Liu, Y., Du, G., Wang, X., Lei, Y.: Analysis and design of high-efficiency bidirectional gan-based CLLC resonant converter. Energies 12(20), 3859 (2019)
  19. Chen, G., Peng, H., Zeng, R., Hu, Y., Ni, K.: A fundamental frequency sorting algorithm for capacitor voltage balance of modular multilevel converter with low-frequency carrier phase shift modulation. IEEE J. Emerg. Select. Top. Power Electron. 6(3), 1595-1604 (2018). https://doi.org/10.1109/JESTPE.2017.2764684
  20. Zhou, Y., He, X., Sheng, L.: Full-bridge resonant converter with hybrid control for wide input voltage range applications. J. Power Electron. 21, 269-281 (2021). https://doi.org/10.1007/s43236-020-00162-z
  21. Yang, Y., Bremner, S., Menictas, C., Meng, K., Dong, Z. Y., and Kay, M.: An economic optimization for BESS sizing in a hybrid PV and wind power plant. 2017 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia). 4-7 Dec. 2017 2017. pp. 1-6. https://doi.org/10.1109/ISGT-Asia.2017.8378353
  22. Hurtt, J. and Baker, K.: Minimum Battery Energy Storage System Sizing Integrated with a Photovoltaic Plant Considering Practical Limitations. 2021. IEEE. https://doi.org/10.1109/powertech46648.2021.9494981
  23. Lesnicar, A. and Marquardt, R.: An innovative modular multilevel converter topology suitable for a wide power range. 2003 IEEE Bologna Power Tech Conference Proceedings. 23-26 June 2003 2003, vol. 3. p. 6 pp. Vol.3. https://doi.org/10.1109/PTC.2003.1304403
  24. Li, H. A. and Tan, R. H. G.: Performance Evaluation of BESS Moving Average Control for 1MW PV Plant. 2021 Innovations in Power and Advanced Computing Technologies (i-PACT). 27-29 Nov. 2021 2021. pp. 1-8. https://doi.org/10.1109/iPACT52855.2021.9696827
  25. Sasmal, R. P., Sen, S., and Chakraborty, A.: Solar photovoltaic output smoothing: Using battery energy storage system. 2016 National Power Systems Conference (NPSC). 19-21 Dec. 2016 2016. pp. 1-5. https://doi.org/10.1109/NPSC.2016.7858894
  26. Schnierer, B.: Maldives - Solar Radiation Measurement Data. https://energydata.info/dataset/maldives-solar-radiation-measurement-data (2017). Aaccessed June 7, 2022