DOI QR코드

DOI QR Code

Offset voltage injection method for neutral-point AC voltage ripple suppression in Vienna rectifiers

  • Young‑Min Go (Department of Electrical Engineering, Dankook University) ;
  • June‑Seok Lee (Department of Electrical Engineering, Dankook University)
  • Received : 2022.09.27
  • Accepted : 2023.05.25
  • Published : 2023.09.20

Abstract

This paper proposes an offset voltage injection method to compensate for AC voltage ripple at the neutral-point of a Vienna rectifier. The proposed method leads to sinusoidal input currents and has a suppression effect on the AC voltage ripple at the neutral-point by injecting three offset voltages to remove both the zero current distortion and voltage unbalance (both DC voltage and AC voltage ripple) at the neutral-point. This can result in an improvement in the Total Harmonic Distortion (THD) of the input current. The offset voltage to realize the suppressing of the AC voltage ripple is defined based on a neutral-point voltage equivalence model of a Vienna rectifier. The priority of the offset voltages is considered to avoid over-modulation. In addition, incompatibility between offset voltages is analyzed to guarantee sinusoidal input currents. By considering both of these characteristics, the proposed method injects the offset voltages in order from the higher priority to the lower priority. The performance and effectiveness of the proposed method are verified with simulation and experimental results.

Keywords

Acknowledgement

This work is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (grant: 21RTRP-B146050-04), and the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. 2022R1F1A1074316).

References

  1. Kolar, J.W., Zach, F.C.: A novel three-phase utility interface minimizing line current harmonics of high-power telecommunications rectifier modules. IEEE Trans. Ind. Electron. 44(4), 456-466 (1997)  https://doi.org/10.1109/41.605619
  2. Saravana, P.P., Kalpana, R., Singh, B., Bhuvaneswari, G.: Design and implementation of sensorless voltage control of front-end rectifier for power quality improvement in telecom system. IEEE Trans. Ind. Appl. 54(3), 2438-2448 (2018)  https://doi.org/10.1109/TIA.2018.2790949
  3. Lee, J.-S., Lee, K.-B., Blaabjerg, F.: Predictive control with discrete space-vector modulation of Vienna rectifier for driving PMSG of wind turbine systems. IEEE Trans. Power Electron. 34(12), 12368-12353 (2019) 
  4. Lee, J.-S., Lee, K.-B.: An open-switch fault detection method and tolerance controls based on SVM in a grid-connected T-type rectifier with unity power factor. IEEE Trans. Ind. Electron. 61(12), 7092-7104 (2014)  https://doi.org/10.1109/TIE.2014.2316228
  5. Lee, J.-S., Lee, K.-B.: A novel carrier-based PWM method for Vienna rectifier with a variable power factor. IEEE Trans. Ind. Electron. 63(1), 3-12 (2016)  https://doi.org/10.1109/TIE.2015.2464293
  6. Lee, J.-S., Lee, K.-B.: Carrier-based discontinuous PWM method for VIENNA rectifiers. IEEE Trans. Power Electron. 30(6), 2896-2900 (2015)  https://doi.org/10.1109/TPEL.2014.2365014
  7. Lee, J.-S., Lee, K.-B.: Performance analysis of carrier-based discontinuous PWM method for Vienna rectifiers with neutral-point voltage balance. IEEE Trans. Power Electron. 31(6), 4075-4084 (2016)  https://doi.org/10.1109/TPEL.2015.2477828
  8. Kolar, J.W., Ertl, H., Zach, F.C.: Space vector-based analytical analysis of the input current distortion of a three-phase discontinuous-mode boost rectifier. IEEE Trans. Ind. Electron. 10(6), 733-745 (1995) 
  9. Gu, L., Jin, K.: A three-phase isolated bidirectional AC/DC converter and its modified SVPWM algorithm. IEEE Trans. Power Electron. 30(10), 5458-5468 (2015)  https://doi.org/10.1109/TPEL.2014.2378274
  10. Li, Y., Zhao, H.: A space vector switching pattern hysteresis control strategy in Vienna rectifier. IEEE Access. 8, 60142-60151 (2020)  https://doi.org/10.1109/ACCESS.2020.2977656
  11. Malinowski, M., Kazmierkowski, M.P., Hansen, S., Blaabjerg, F., Marques, G.D.: Virtual-fux-based direct power control of three-phase PWM rectifiers. IEEE Trans. Ind. Appl. 37(4), 1019-1027 (2001)  https://doi.org/10.1109/28.936392
  12. Zhang, M., Hang, L., Yao, W., Lu, Z., Tolbert, L.: A novel strategy for three-phase/switch/level (Vienna) rectifier under severe unbalanced grids. IEEE Trans. Ind. Electron. 60(10), 4243-4252 (2013)  https://doi.org/10.1109/TIE.2012.2217721
  13. Lai, R., Wang, F., Burgos, R., Boroyevich, D., Jiang, D., Zhang, D.: Average modeling and control design for VIENNA-type rectifiers considering the dc-link voltage balance. IEEE Trans. Power Electron. 24(11), 2509-2522 (2009)  https://doi.org/10.1109/TPEL.2009.2032262
  14. Zhu, W., Chen, C., Duan, S., Wang, T., Liu, P.: A carrier-based discontinuous PWM method with varying clamped area for Vienna rectifier. IEEE Trans. Ind. Electron. 66(9), 7177-7188 (2019)  https://doi.org/10.1109/TIE.2018.2873524
  15. Zhang, L., Zhao, R., Ju, P., Ji, C., Zou, Y., Ming, Y., Xing, Y.: A modified DPWM with neutral point voltage balance capability for three-phase Vienna rectifiers. IEEE Trans. Power Electron. 69(1), 263-273 (2021)  https://doi.org/10.1109/TPEL.2020.3002660
  16. Zou, Y., Xing, Y., Zhang, L., Zheng, Z., Liu, X., Hu, H., Wang, T., Wang, Y.: Dynamic-space-vector discontinuous PWM for three-phase Vienna rectifiers with unbalanced neutral-point voltage. IEEE Trans. Power Electron. 36(8), 9015-9026 (2021)  https://doi.org/10.1109/TPEL.2021.3057120
  17. Ming, Y., Zou, Y., Xing, Y., Zhao, H., Wang, T., Wang, Y.: A hybrid carrier-based DPWM with controllable NP voltage for three-phase Vienna rectifiers. IEEE Trans. Transport. Electrific. 8(2), 1874-1884 (2022)  https://doi.org/10.1109/TTE.2021.3129778
  18. Lee, J.-S., Lee, K.-B.: Time-offset injection method for neutral-point AC ripple voltage reduction in a three-level inverter. IEEE Trans. Power Electron. 31(3), 1931-1941 (2016)  https://doi.org/10.1109/TPEL.2015.2439689
  19. Wu, C., Xiong, X., Taul, M.G., Blaabjerg, F.: On the equilibrium points in three-phase PLL based on the d-axis voltage normalization. IEEE Trans. Power Electron. 36(11), 12146-12150 (2021)  https://doi.org/10.1109/TPEL.2021.3074986
  20. Ishiwaki, S., Iwaki, T., Sugihara, Y., Nanamori, K, Yamamoto, M.: Analysis of false turn-on phenomenon of GaN HEMT with parasitic inductances for propose novel design method focusing on peak gate voltage. In: Proc. IEEE Energy Convers. Congr. Expo., pp. 1395-1401 (2017) 
  21. Ma, H., Feng, M., Tian, Y., Chen, X.: Research on carried-based PWM with zero-sequence component injection for Vienna type rectifiers. J. Power Electron. 19(2), 560-568 (2019) 
  22. Park. J.-H., Yang, S.-H., Lee, K.B.: Synchronous carrier-based pulse width modulation switching method for Vienna rectifier. J. Power Electron. 18(2), 604-614 (2018) 
  23. Zhao, H., Zheng, T.Q., Li, Y., Du, J., Shi, P.: Control and analysis of Vienna rectifier used as the generator-side converter of PMSG-based wind power generation systems. J. Power Electron. 17(1), 212-221 (2017)  https://doi.org/10.6113/JPE.2017.17.1.212
  24. Saravana, P.P., Kalpana, R., Singh, B.: Three-phase three-level boost-type front-end PFC rectifier for improving power quality at input AC mains of telecom loads. J. Power Electron. 18(6), 1819-1829 (2018)