DOI QR코드

DOI QR Code

A Study on Water-level Rise Behavior Curve using Historical Record

기왕자료를 이용한 수위상승거동곡선에 관한 연구

  • Kwak, Jaewon (Han River Flood Control Office) ;
  • Kim, Gilho (Korea Institute of Civil Engineering and Building Technology)
  • 곽재원 (환경부 한강홍수통제소) ;
  • 김길호 (한국건설기술연구원 수자원하천연구본부)
  • Received : 2023.03.16
  • Accepted : 2023.04.24
  • Published : 2023.10.01

Abstract

The comprehension of water-level behavior in rivers is essential for effective flood and river environmental management. The objective of this study is to propose a methodology that can be used by field engineers engaged in actual practice, to readily identify the characteristics of water-level behavior during flood events. To this end, a total of 45 historical water-level records from 2010 to 2022 year, which provide flood information for the flood vulnerable districts of the Han River, were obtained. A Water-level Rise Behavior Curve (WRBC) was developed and suggested to quantify the amount of water-level rise per unit time during flood. As a result, the water-level rises by more than 80% of the total rise within the first 6.2 hours, followed by a gradual rise. The time required to achieve a particular equilibrium varied depending on the area and runoff characteristics of the upstream. Furthermore, the study revealed that the WRBC provides a statistical representation of the water-level rise trend during floods, and can be effectively utilized for flood mitigation measures in waterfront spaces and irrigation facilities.

하천의 수위변화 특성에 대한 이해는 여러 수방활동 및 하천환경의 관리를 위하여 필수적이다. 본 연구는 각종 수방활동에서 종사하는 현장 엔지니어가 특정 지점의 홍수시 수위상승 특성을 간편하게 확인하고 활용할 수 있는 방법론을 제시하는 데 목적이 있다. 이를 위하여 한강수계의 홍수취약지구에 홍수정보를 제공하고 있는 45개 관측소의 2010년부터 2022년까지의 10분 단위 수위자료를 이용하여 홍수 사상에서 발생하는 시간적인 상승량을 단위시간을 통하여 정량화하고 분위화한 수위상승거동곡선(WRBC) 개념을 제시하였으며, 그 적용성을 검토하였다. 분석결과, 홍수시의 수위상승 거동은 평균적으로 초반 6.2시간 이내에 전체 수위상승량의 80% 이상이 상승하며 그 이후에는 점진적으로 상승하는 것으로 분석되었으며, 수위상승 이후에 일정한 평형상태에 도달하는 시간은 상류유역의 면적과 유출 특성에 따라 다른 것으로 나타났다. 이러한 WRBC는 홍수유출로 인하여 발생하는 수위상승의 평균적인 경향에 대해 통계적이고 직관적인 검토에 장점이 있으며, 하천변에 위치한 친수공간, 수리시설 등의 수방활동에 활용할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 물관리연구사업(1615012820)과 과학기술정보통신부 한국건설기술연구원 주요사업(20230263-001)의 지원을 받아 연구되었습니다. 아울러 소중한 시간을 할애하여 논문을 심사해주시고 귀한 의견을 주신 익명의 심사위원님들께도 감사드립니다.

References

  1. Agirre, U., Goni, M., Lopez, J. J. and Gimena, F. N. (2005). "Application of a unit hydrograph based on subwatershed division and comparison with Nash's instantaneous unit hydrograph." Catena, Elsevier, Vol. 64, Nos. 2-3, pp. 321-332, https://doi.org/10.1016/j.catena.2005.08.013.
  2. Croley II, T. E.(1980). "Gamma synthetic hydrographs." Journal of Hydrology, Elsevier, Vol. 47, Nos. 1-2, pp. 41-52, https://doi.org/10.1016/0022-1694(80)90046-3.
  3. Gray, D. M. (1961). "Synthetic unit hydrographs for small watersheds." Journal of the Hydraulics Division, ASCE, Vol. 87, No. 4, pp. 33-54, https://doi.org/10.1061/jyceaj.0000631.
  4. Guo, J. (2022). "General and analytic unit hydrograph and its applications." Journal of Hydrologic Engineering, ASCE, Vol. 27, No. 2, 04021046, https://doi.org/10.1061/(ASCE)he.1943-5584.0002149.
  5. Gyeonggi-do Provincial Government (1998). River basic plan for the Yeongpyeong basin, Gyeonggi-do Provincial Government (in Korean).
  6. Gyeonggi-do Provincial Government (2020). River basic plan for the Hongcheon river and river facility management ledger (in Korean).
  7. Hwang, S., Yoon, J., Kang, N., Lee, D. and Nog, H. (2020). "Status of flood forecasting and warning technology in Korea." KSCE Magazine, KSCE, Vol. 68, No. 9, pp. 74-83 (in Korean).
  8. Le Coz, J., Renard, B., Bonnifait, L., Branger, F. and Le Boursicaud, R. (2014). "Combining hydraulic knowledge and uncertain gaugings in the estimation of hydrometric rating curves: A Bayesian approach." Journal of Hydrology, Elsevier, Vol. 509, pp. 573-587, https://doi.org/10.1016/j.jhydrol.2013.11.016.
  9. Lee, I. S. and Lee, H. H. (2014). "Analysis of secular changes in the hydrological characteristics of a small forested watershed using a baseflow recession curve." Journal of Korean Forest Society, KFS, Vol. 103, No. 3, pp. 383-391, https://doi.org/10.14578/jkfs.2014.103.3.383 (in Korean).
  10. Lee, M., Yoo, Y., Joo, H., Kim, K. T., Kim, H. S. and Kim, S. (2021). "Construction of rating curve at high water level considering rainfall effect in a tidal river." Journal of Hydrology: Regional Studies, Elsevier, Vol. 37, 100907, https://doi.org/10.1016/j.ejrh.2021.100907.
  11. Lei, W., Ding, B., Kong, W. and Huang, P. (2020). "Study on the characteristics of water level during the flood season in the Poyang Lake, China." Proceedings of IOP Conference Series: Earth and Environmental Science, Vol. 510, No. 3, 032012, https://doi.org/10.1088/1755-1315/510/3/032012.
  12. Lian, J., Xu, H., Xu, K. and Ma, C. (2017). "Optimal management of the flooding risk caused by the joint occurrence of extreme rainfall and high tide level in a coastal city." Natural Hazards, Springer, Vol. 89, No. 1, pp. 183-200, https://doi.org/10.1007/s11069-017-2958-4.
  13. Ministry of Environment (2021). Korea River List, Statute and policy of Ministry of Environment, Available at: https://www.me.go.kr/home/web/index.do?menuId=10259 (Accessed: March 2, 2023) (in Korean).
  14. Ministry of Environment (2022). The Ministry of Environment is moving forward with eternal measures to resolve 433 flood vulnerable zones, Press release of Ministry of Environment, Available at: http://www.me.go.kr/home/web/board/read.do?boardMasterId=1&boardId=1537320&menuId=10525 (Accessed: March 2, 2023) (in Korean).
  15. Ministry of Environment (2023). Han Flood Control Office website, Han Flood Control Office, Available at: http://www.hrfco.go.kr (Accessed: March 2, 2023).
  16. Ministry of Land, Transport and Maritime Affairs (MOLTI) (2011). River basic plan for the Gyeongancheon and river facility management ledger, Ministry of Land, Transport and Maritime Affairs, Wonju Regional Construction and Management Administration, Wonju, Korea, pp. 172-192 (in Korean).
  17. Ministry of Land, Transport and Maritime Affairs (MOLTI) (2022). Annaul Hydrological Report in Korea (in Korean).
  18. Nadarajah, S. (2007). "Probability models for unit hydrograph derivation." Journal of Hydrology, Elsevier, Vol. 344, Nos. 3-4, pp. 185-189, https://doi.org/10.1016/j.jhydrol.2007.07.004.
  19. Nourani, V., Singh, V. P. and Delafrouz, H. (2009). "Three geomorphological rainfall-runoff models based on the linear reservoir concept." Catena, Elsevier, Vol. 76, No. 3, pp. 206-214, https://doi.org/10.1016/j.catena.2008.11.008.
  20. Oh, C. Y., Lee, J. and Choi, K. (2017). "Study on development of flood information service system in waterfront." Proceedings of the Korea Water Resources Association Conference 2017, Korea Water Resources Association, Changwon, Korea, pp. 212-212 (in Korean).
  21. Rodriguez-Iturbe, I., Devoto, G. and Valdes, J. B. (1979). "Discharge response analysis and hydrologic similarity: the interrelation between the geomorphologic IUH and the storm characteristics." Water Resources Research, AGU, Vol. 15, No. 6, pp. 1435-1444, https://doi.org/10.1029/WR015i006p01435.
  22. Sarkar, S. and Rai, R. K. (2011). "Flood inundation modeling using Nakagami-m distribution based GIUH for a partially gauged catchment." Water Resources Management, Springer, Vol. 25, No. 14, pp. 3805-3835, https://doi.org/10.1007/s11269-011-9890-2.
  23. SCS (1957). Use of storm and watershed characteristics in synthetic hydrograph analysis and application: V. Mockus, U.S. Dept. of Agriculture, Soil Conservation Service, Washington, D.C.
  24. Sherman, L. K. (1932). "Streamflow from rainfall by the unit hydrograph method." Engineering News-Record, Vol. 108, pp. 501-505.
  25. Singh, V. P. (1995). Computer models of watershed hydrology. Water Resources Publications, Chlsea, Michigan, USA.
  26. Singh, P. K., Mishra, S. K. and Jain, M. K. (2014). "A review of the synthetic unit hydrograph: from the empirical UH to advanced geomorphological methods." Hydrological Sciences Journal, Taylor & Francis, Vol. 59, No. 2, pp. 239-261, https://doi.org/10.1080/02626667.2013.870664.
  27. Snyder, F. F. (1938). "Synthetic unit hydrographs." Transactions of the American Geophysical Union, Vol. 19, pp. 447-454. https://doi.org/10.1029/TR019i001p00447
  28. Soderholm, K., Pihlajamaki, M., Dubrovin, T., Veijalainen, N., Vehvilainen, B. and Marttunen, M. (2018). "Collaborative planning in adaptive flood risk management under climate change." Water Resources Management, Springer, Vol. 32, No. 4, pp. 1383-1397, https://doi.org/10.1007/s11269-017-1875-3.
  29. Sovic, A., Potocki, K., Sersic, D. and Kuspilic, N. (2012). "Wavelet analysis of hydrological signals on an example of the River Sava." Proceedings of the 35th International Convention MIPRO, IEEE, Opatija, Croatia, pp. 1042-1047.
  30. Yoon, S. K. and Moon, Y. I. (2014). "The recent increasing trends of exceedance rainfall thresholds over the Korean major cities." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 34, No. 1, pp. 117-133, https://doi.org/10.12652/ksce.2014.34.1.0117 (in Korean).