DOI QR코드

DOI QR Code

Monte Carlo simulations for gamma-ray spectroscopy using bismuth nanoparticle-containing plastic scintillators with spectral subtraction

  • Taeseob Lim (School of Energy Systems Engineering, Chung-Ang University) ;
  • Siwon Song (School of Energy Systems Engineering, Chung-Ang University) ;
  • Seunghyeon Kim (School of Energy Systems Engineering, Chung-Ang University) ;
  • Jae Hyung Park (School of Energy Systems Engineering, Chung-Ang University) ;
  • Jinhong Kim (School of Energy Systems Engineering, Chung-Ang University) ;
  • Cheol Ho Pyeon (Research Center for Safe Nuclear System, Institute for Integrated Radiation and Nuclear Science, Kyoto University) ;
  • Bongsoo Lee (School of Energy Systems Engineering, Chung-Ang University)
  • 투고 : 2023.04.06
  • 심사 : 2023.05.22
  • 발행 : 2023.09.25

초록

In this study, we used the Monte Carlo N-Particle program to simulate the gamma-ray spectra obtained from plastic scintillators holes filled with bismuth nanoparticles. We confirmed that the incorporation of bismuth nanoparticles into a plastic scintillator enhances its performance for gamma-ray spectroscopy using the subtraction method. The subtracted energy spectra obtained from the bismuth-nanoparticle-incorporated and the original plastic scintillator exhibit a distinct energy peak that does not appear in the corresponding original spectra. We varied the diameter and depth of the bismuth-filled holes to determine the optimal hole design for gamma-ray spectroscopy using the subtraction method. We evaluated the energy resolutions of the energy peaks in the gamma-ray spectra to estimate the effects of the bismuth nanoparticles and determine their optimum volume in the plastic scintillator. In addition, we calculated the peak-to-total ratio of the energy spectrum to evaluate the energy measuring limit of the bismuth nanoparticle-containing plastic scintillator using the subtraction method.

키워드

과제정보

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No. 2020M2D2A2062457, 2022M2D4A1084440) and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean Government (MOTIE) (No. 20201520300060).

참고문헌

  1. J. Ely, R. Kouzes, et al., The use of energy windowing to discriminate snm from norm in radiation portal monitors, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 560 (2) (2006) 373-387.  https://doi.org/10.1016/j.nima.2006.01.053
  2. H.C. Lee, B.T. Koo, et al., Evaluation of source identification method based on energy-weighting level with portal monitoring system using plastic scintillator, J. Rad. Protect. Res. 45 (3) (2020) 117-129.  https://doi.org/10.14407/jrpr.2020.45.3.117
  3. S. Min, H. Kang, et al., Integrated and portable probe based on functional plastic scintillator for detection of radioactive cesium, Appl. Sci. 11 (11) (2021) 5210. 
  4. D. Yu, P. Wang, et al., Two-dimensional halide perovskite as beta-ray scintillator for nuclear radiation monitoring, Nat. Commun. 11 (1) (2020) 3395. 
  5. G.F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, 2010. 
  6. K. Kovler, S. Levinson, et al., Scintillation vs. Semiconductor Spectrometers for Determination of Norm in Building Materials, 2014. 
  7. E.R. Siciliano, J.H. Ely, et al., Comparison of pvt and nai(tl) scintillators for vehicle portal monitor applications, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 550 (3) (2005) 647-674.  https://doi.org/10.1016/j.nima.2005.05.056
  8. Z. Cho, C. Tsai, L. Eriksson, Tin and lead loaded plastic scintillators for low energy gamma-ray detection with particular application to high rate detection, IEEE Trans. Nucl. Sci. 22 (1) (1975) 72-80.  https://doi.org/10.1109/TNS.1975.4327618
  9. N. Cherepy, H. Martinez, et al., New plastic scintillators for gamma spectroscopy, neutron detection and imaging, in: 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), IEEE, 2017, pp. 1-3. 
  10. B.L. Rupert, N.J. Cherepy, et al., Bismuth-loaded Polymer Scintillators for Gamma Ray Spectroscopy, MRS Online Proceedings Library (OPL), 2011, p. 1341. 
  11. N.J. Cherepy, S. Hok, et al., Bismuth-loaded plastic scintillator portal monitors, in: Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XX, vol. 10762, SPIE, 2018, pp. 10-15. 
  12. T.J. Hajagos, C. Liu, et al., High-z sensitized plastic scintillators: a review, Adv. Mater. 30 (27) (2018), e1706956. 
  13. G.H.V. Bertrand, F. Sguerra, et al., Influence of bismuth loading in polystyrene-based plastic scintillators for low energy gamma spectroscopy, J. Mater. Chem. C 2 (35) (2014). 
  14. S. O'Neal, N. Cherepy, et al., Performance of high stopping power bismuth-loaded plastic scintillators for radiation portal monitors, IEEE Trans. Nucl. Sci. 67 (4) (2020) 746-751.  https://doi.org/10.1109/TNS.2020.2971904
  15. M. Hamel, F. Carrel, Pseudo-gamma spectrometry in plastic scintillators, in: New Insights on Gamma Rays, 2017 ch. (Chapter 3). 
  16. G.H.V. Bertrand, J. Dumazert, et al., Understanding the behaviour of different metals in loaded scintillators: discrepancy between gadolinium and bismuth, J. Mater. Chem. C 3 (23) (2015) 6006-6011.  https://doi.org/10.1039/C5TC00387C
  17. W. Metwally, R. Gardner, A. Sood, Gaussian broadening of mcnp pulse height spectra, Trans. Am. Nucl. Soc. 91 (2004) 789-790. 
  18. Andrei Stavrov, Eugene Yamamoto, Real breakthrough in detection of radioactive sources by portal monitors with plastic detectors and New Advanced Source Identification Algorithm (ASIA-New), in: International Conference on Advancements in Nuclear Instrumentation Measurement Methods and Their Applications, ANIMMA, 2015, p. 4, 2015. 
  19. L. Swiderski, M. Moszynski, et al., Measurement of compton edge position in low-z scintillators, Radiat. Meas. 45 (3-6) (2010) 605-607.  https://doi.org/10.1016/j.radmeas.2009.10.015
  20. E.R. Siciliano, J.H. Ely, et al., Energy calibration of gamma spectra in plastic scintillators using compton kinematics, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 594 (2) (2008) 232-243.  https://doi.org/10.1016/j.nima.2008.06.031
  21. B. Stribrnsky, M. Petriska, R. Hinca, Energy calibration of plastic scintillator detector, in: Presented at the Applied Physics of Condensed Matter (Apcom 2019), 2019. 
  22. C. Kim, Y. Kim, et al., Iterative Monte Carlo simulation with the compton kinematics-based geb in a plastic scintillation detector, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 795 (2015) 298-304.  https://doi.org/10.1016/j.nima.2015.06.007
  23. H. Leutz, G. Schulz, L. Van Gelderen, Peak/total-ratios for NaI(Tl)-crystals, Nucl. Instrum. Methods 40 (2) (1966) 257-260.  https://doi.org/10.1016/0029-554X(66)90383-1
  24. P. Limkitjaroenporn, W. Hongtong, et al., PTR, PCR, and energy resolution study of gagg: Ce scintillator, in: Journal of Physics: Conference Series, vol. 970, IOP Publishing, 2018, 012016, 1.