DOI QR코드

DOI QR Code

Real-time monitoring of ultra-high dose rate electron beams using bremsstrahlung photons

  • Hyun Kim (Research Center, Dongnam Institute of Radiological & Medical Sciences) ;
  • Dong Hyeok Jeong (Research Center, Dongnam Institute of Radiological & Medical Sciences) ;
  • Sang Koo Kang (Research Center, Dongnam Institute of Radiological & Medical Sciences) ;
  • Manwoo Lee (Research Center, Dongnam Institute of Radiological & Medical Sciences) ;
  • Heuijin Lim (Research Center, Dongnam Institute of Radiological & Medical Sciences) ;
  • Sang Jin Lee (Research Center, Dongnam Institute of Radiological & Medical Sciences) ;
  • Kyoung Won Jang (Research Center, Dongnam Institute of Radiological & Medical Sciences)
  • Received : 2022.07.01
  • Accepted : 2023.05.30
  • Published : 2023.09.25

Abstract

Recently, as the clinically positive biological effects of ultra-high dose rate (UHDR) radiation beams have been revealed, interest in flash radiation therapy has increased. Generally, FLASH preclinical experiments are performed using UHDR electron beams generated by linear accelerators. Real-time monitoring of UHDR beams is required to deliver the correct dose to a sample. However, it is difficult to use typical transmission-type ionization chambers for primary beam monitoring because there is no suitable electrometer capable of reading high pulsed currents, and collection efficiency is drastically reduced in pulsed radiation beams with ultra-high doses. In this study, a monitoring method using bremsstrahlung photons generated by irradiation devices and a water phantom was proposed. Charges collected in an ionization chamber located at the back of a water phantom were analyzed using the bremsstrahlung tail on electron depth dose curves obtained using radiochromic films. The dose conversion factor for converting a monitored charge into a delivered dose was determined analytically for the Advanced Markus® chamber and compared with experimentally determined values. It is anticipated that the method proposed in this study can be useful for monitoring sample doses in UHDR electron beam irradiation.

Keywords

Acknowledgement

This work was supported by the Dongnam Institute of Radiological & Medical Sciences (DIRAMS) grant funded by the Korea government (MSIT) (No. 50493-2023)

References

  1. V. Favaudon, L. Caplier, V. Monceau, F. Pouzoulet, M. Sayarath, C. Fouillade, M.-F. Poupon, I. Brito, P. Hupe, J. Bourhis, J. Hall, J.-J. Fontaine, M.-C. Vozenin, Ultra high dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice, Sci. Transl. Med. 16 (2014) 1-9.
  2. P. Montay-Gruel, K. Petersson, M. Jaccard, G. Boivin, J.-F. Germond, B. Petit, R. Doenlen, V. Favaudon, F. Bochud, C. Bailat, J. Bourhis, M.-C. Vozenin, Irradiation in a flash: unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s, Radiother. Oncol. 124 (2017) 365-369. https://doi.org/10.1016/j.radonc.2017.05.003
  3. J. Bourhis, W.J. Sozzi, P.G. Jorge, O. Gaide, C. Bailat, F. Duclos, D. Patin, M. Ozsahin, F. Bochud, J.-F. Germond, R. Moeckli, M.-C. Vozenin, Treatment of a first patient with FLASH-radiotherapy, Radiother. Oncol. 139 (2019) 18-22. https://doi.org/10.1016/j.radonc.2019.06.019
  4. E. Schuler, S. Trovati, G. King, F. Lartey, M. Rafat, M. Villegas, A.J. Praxel, B.W. Loo, P.G. Maxim, Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator, Int. J. Radiat. Oncol. Biol. Phys. 97 (2017) 195-203. https://doi.org/10.1016/j.ijrobp.2016.09.018
  5. M. Lempart, B. Blad, G. Adrian, S. Back, T. Knoos, C. Ceberg, K. Petersson, Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation, Radiother. Oncol. 139 (2019) 40-45. https://doi.org/10.1016/j.radonc.2019.01.031
  6. L.G. Marcu, E. Bezak, D.D. Peukert, P. Wilson, Translational research in FLASH radiotherapy-from radiobiological mechanisms to in vivo results, Biomedicines 9 (2021) 1-15. https://doi.org/10.3390/biomedicines9020181
  7. H. Lim, D.H. Jeong, K.W. Jang, S.K. Kang, H.C. Kim, S.H. Kim, D.E. Lee, K.H. Lee, S.J. Lee, M. Lee, Implementation of ultra-high dose-rate electron beam from 6-MeV C-band linear accelerator for preclinical study, J. Instrum. 15 (2020), P09013.
  8. K. Petersson, M. Jaccard, J.-F. Germond, T. Buchillier, F. Bochud, J. Bourhis, M.-C. Vozenin, C. Bailat, High dose-per-pulse electron beam dosimetry-a model to correct for the ion recombination in the Advanced Markus ionization chamber, Med. Phys. 44 (2017) 1157-1167. https://doi.org/10.1002/mp.12111
  9. J.W. Boag, E. Hochhauser, O.A. Balk, The effect of free-electron collection on the recombination correction to ionization measurements of pulsed radiation, Phys. Med. Biol. 41 (1996) 885-897. https://doi.org/10.1088/0031-9155/41/5/005
  10. R.F. Laitano, A.S. Guerra, M. Pimpinella, C. Caporali1, A. Petrucci, Charge collection efficiency in ionization chambers exposed to electron beams with high dose per pulse, Phys. Med. Biol. 51 (2006) 6419-6436. https://doi.org/10.1088/0031-9155/51/24/009
  11. D.H. Jeong, M. Lee, H. Lim, S.K. Kang, K.W. Jang, High-dose-rate electron-beam dosimetry using an advanced Markus chamber with improved ion-recombination corrections, Prog Med Phys 31 (2020) 145-152. https://doi.org/10.14316/pmp.2020.31.4.145
  12. T.C. Zhu, I.J. Das, B.E. Bjarngard, Characteristics of bremsstrahlung in electron beams, Med. Phys. 28 (2001) 1352-1358. https://doi.org/10.1118/1.1382608
  13. F.H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, John Wiley & Sons, Inc., New York, 1986, pp. 177-178.
  14. https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html.
  15. D.H. Jeong, M. Lee, H. Lim, S.K. Kang, S.J. Lee, H.C. Kim, K. Lee, S.H. Kim, D.E. Lee, K.W. Jang, Electron beam scattering device for FLASH preclinical studies with 6-MeV LINAC, Nucl. Eng. Technol. 53 (2021) 1289-1296. https://doi.org/10.1016/j.net.2020.09.019
  16. P. Andreo, D.T. Burns, K. Hohlfeld, M.S. Huq, T. Kanai, F. Laitano, V. Smyth, S. Vynckier, Absorbed Dose Determination in External Beam Radiotherapy: an International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water, International Atomic Energy Agency, 2006, pp. 150-151. IAEA TRS-398.
  17. F.M. Khan, The Physics of Radiation Therapy, Lippincott Williams and Wilkins, Philadelphia, pp 106-155.
  18. Elsa Y. Leon Marroquin, A. Jose, Gonzalez Herrera, A. Miguel, Camacho Lopez, E. Jose, Villarreal Barajas, A. Olivia, Garcia-Garduno, Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density, J. Appl. Clin. Med. Phys. 17 (2016) 466-481. https://doi.org/10.1120/jacmp.v17i5.6262