DOI QR코드

DOI QR Code

Using machine learning to forecast and assess the uncertainty in the response of a typical PWR undergoing a steam generator tube rupture accident

  • Tran Canh Hai Nguyen (Department of NPP Engineering, KEPCO International Nuclear Graduate School) ;
  • Aya Diab (Department of NPP Engineering, KEPCO International Nuclear Graduate School)
  • 투고 : 2022.11.18
  • 심사 : 2023.05.19
  • 발행 : 2023.09.25

초록

In this work, a multivariate time-series machine learning meta-model is developed to predict the transient response of a typical nuclear power plant (NPP) undergoing a steam generator tube rupture (SGTR). The model employs Recurrent Neural Networks (RNNs), including the Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and a hybrid CNN-LSTM model. To address the uncertainty inherent in such predictions, a Bayesian Neural Network (BNN) was implemented. The models were trained using a database generated by the Best Estimate Plus Uncertainty (BEPU) methodology; coupling the thermal hydraulics code, RELAP5/SCDAP/MOD3.4 to the statistical tool, DAKOTA, to predict the variation in system response under various operational and phenomenological uncertainties. The RNN models successfully captures the underlying characteristics of the data with reasonable accuracy, and the BNN-LSTM approach offers an additional layer of insight into the level of uncertainty associated with the predictions. The results demonstrate that LSTM outperforms GRU, while the hybrid CNN-LSTM model is computationally the most efficient. This study aims to gain a better understanding of the capabilities and limitations of machine learning models in the context of nuclear safety. By expanding the application of ML models to more severe accident scenarios, where operators are under extreme stress and prone to errors, ML models can provide valuable support and act as expert systems to assist in decision-making while minimizing the chances of human error.

키워드

과제정보

This research was supported by the 2022 Research Fund of KEPCO International Nuclear Graduate School (KINGS), Ulsan, Republic of Korea.

참고문헌

  1. Y. Jang, E. Park, Social acceptance of nuclear power plants in Korea: the role of public perceptions following the Fukushima accident, Renew. Sustain. Energy Rev. 128 (2020), 109894, https://doi.org/10.1016/j.rser.2020.109894. 
  2. H. Zhang, Multi-Physics Best Estimate Plus Uncertainty (MP-BEPU) Analysis Framework LOTUS and RELAP5-3, IRUG Meeting, 2018. 
  3. M. Avramova, A. Abarca, J. Hou, K. Ivanov, Innovations in multi-physics methods development, validation, and uncertainty quantification, J. Nucl. Eng. 2 (1) (2021) 44-56, https://doi.org/10.3390/jne2010005. 
  4. USNRC, Development of a Phenomena Identification and Ranking Table for Thermal Hydraulic Phenomena during PWR LBLOCA, United States Nuclear Regulatory Commission, 1988. 
  5. J. Zhang, S.M. Bajorek, R.M. Kemper, M.E. Nissley, N. Petkov, L.E. Hochreiter, Application of the COBRA/TRAC best estimate methodology to the AP600 large-break LOCA analysis, Nucl. Eng. (1997), https://doi.org/10.1115/imece1997-0603. 
  6. Y. Yang, J. Yang, C. Deng, M. Ishii, Simulation and uncertainty analysis of main steam line break accident on an integral test facility, Ann. Nucl. Energy 144 (2020), 107565, https://doi.org/10.1016/j.anucene.2020.107565. 
  7. D. Sun, Z. Zhang, X. Li, L. Li, H. Wang, A. Xu, S. Chen, An improved best estimate plus uncertainty method for small-break loss-of-coolant accident in pressurized water reactor, Front. Energy Res. 8 (2020), https://doi.org/10.3389/fenrg.2020.00188. 
  8. O. Marchand, J. Zhang, M. Cherubini, Uncertainty and sensitivity analysis in reactivity-initiated accident fuel modeling: synthesis of Organisation for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) benchmark on reactivity-initiated accident codes phase-II, Nucl. Eng. Technol. 50 (2) (2018) 280-291, https://doi.org/10.1016/j.net.2017.12.007. 
  9. E. Castro, D. Cuervo, N. Garcia-Herranz, M. Avramova, Thermal-hydraulic Uncertainty Propagation in a Main Steam Line Break Scenario, PHYSOR, 2016. 
  10. Y. Yang, C. Deng, J. Yang, Best estimate plus uncertainty analysis of a small-break LOCA on an advanced generation-III pressurized water reactor, Int. J. Energy Res. 45 (8) (2020) 11916-11929, https://doi.org/10.1002/er.5920. 
  11. J. de Sousa, A. Diab, Best estimate plus uncertainty analysis for SBO, Trans. Am. Nucl. Soc. 121 (2019), https://doi.org/10.13182/t30834. 
  12. R. Bocanegra Melian, Towards a BEPU Methodology for Containment Safety Analyses, PhD. Thesis, Universidad Politechnica De Madrid, 2016, https://doi.org/10.20868/upm.thesis.55578. 
  13. C. Queral, J. Montero-Mayorga, J. Gonzalez-Cadelo, G. Jimenez, AP1000® large-break loca BEPU analysis with trace code, Ann. Nucl. Energy 85 (2015) 576-589, https://doi.org/10.1016/j.anucene.2015.06.011. 
  14. J. Yang, Y. Yang, C. Deng, M. Ishii, Best estimate plus uncertainty analysis of a large break Loca on Generation III reactor with RELAP5, Ann. Nucl. Energy 127 (2019) 326-340, https://doi.org/10.1016/j.anucene.2018.12.019. 
  15. E. Zugazagoitia, C. Queral, K. Fernandez-Cosials, J. Gomez, L.F. Duran, J. Sanchez-Torrijos, J.M. Posada, Uncertainty and sensitivity analysis of a PWR loca sequence using parametric and non-parametric methods, Reliab. Eng. Syst. Saf. 193 (2020), 106607, https://doi.org/10.1016/j.ress.2019.106607. 
  16. Y. Choi, J.H. Bae, D. Yeo, D. Cho, J. Lee, J. Lee, O. Kwon, Deep-learning-based Nuclear Power Plant Fault detection using remote light-emitting diode array data transmission, Microw. Opt. Technol. Lett. 63 (12) (2021) 2909-2915, https://doi.org/10.1002/mop.32974. 
  17. G. Hu, T. Zhou, Q. Liu, Data-driven machine learning for fault detection and diagnosis in nuclear power plants: a Review, Front. Energy Res. 9 (2021), https://doi.org/10.3389/fenrg.2021.663296. 
  18. M. Gomez-Fernandez, K. Higley, A. Tokuhiro, K. Welter, W.-K. Wong, H. Yang, Status of research and development of learning-based approaches in nuclear science and engineering: a Review, Nucl. Eng. Des. 359 (2020), 110479, https://doi.org/10.1016/j.nucengdes.2019.110479. 
  19. A. Papaoikonomou, J. Wingate, V. Verma, A. Durrant, G. Ioannou, T. Papagiannis, M. Yu, G. Alexandridis, A. Dokhane, G. Leontidis, S. Kollias, A. Stafylopatis, Deep learning techniques for in-core perturbation identification and localization of time-series nuclear plant measurements, Ann. Nucl. Energy 178 (2022), 109373, https://doi.org/10.1016/j.anucene.2022.109373. 
  20. F. Caliva, F.S. De Ribeiro, A. Mylonakis, C. Demazirere, P. Vinai, G. Leontidis, S. Kollias, A deep learning approach to anomaly detection in nuclear reactors, in: 2018 International Joint Conference on Neural Networks (IJCNN), 2018, https://doi.org/10.1109/ijcnn.2018.8489130. 
  21. C.K. Maurya, D. Toshniwal, Anomaly detection in nuclear power plant data using support vector data description, in: Proceedings of the 2014 IEEE Students' Technology Symposium, 2014, https://doi.org/10.1109/techsym.2014.6807919. 
  22. M. Gomez-Fernandez, W.-K. Wong, A. Tokuhiro, K. Welter, A.M. Alhawsawi, H. Yang, K. Higley, Isotope identification using Deep Learning: an explanation, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 988 (2021), 164925, https://doi.org/10.1016/j.nima.2020.164925. 
  23. S.H. Park, D.S. Kim, J.H. Kim, M.G. Na, Prediction of the reactor vessel water level using fuzzy neural networks in severe accident circumstances of NPPS, Nucl. Eng. Technol. 46 (3) (2014) 373-380, https://doi.org/10.5516/net.04.2013.087. 
  24. H.M. Park, J.H. Lee, K.D. Kim, Wall temperature prediction at critical heat flux using a machine learning model, Ann. Nucl. Energy 141 (2020), 107334, https://doi.org/10.1016/j.anucene.2020.107334. 
  25. W. Sallehhudin, A. Diab, Using machine learning to predict the fuel peak cladding temperature for a large break loss of coolant accident, Front. Energy Res. 9 (2021), https://doi.org/10.3389/fenrg.2021.755638. 
  26. S. Lee, Y.-S. Bang, J. Cho, Preliminary Prediction of Core Exit Temperature for Severe Accident Using Machine Learning, Transactions of the Korean Nuclear Society Virtual Spring Meeting, 2021. 
  27. N. Ali, B. Viggiano, M. Tutkun, R.B. Cal, Data-driven machine learning for accurate prediction and statistical quantification of two-phase flow regimes, J. Petrol. Sci. Eng. 202 (2021), 108488, https://doi.org/10.1016/j.petrol.2021.108488. 
  28. M.G. Na, S.H. Shin, S.M. Lee, D.W. Jung, S.P. Kim, J.H. Jeong, B.C. Lee, Prediction of major transient scenarios for severe accidents of nuclear power plants, IEEE Trans. Nucl. Sci. 51 (2) (2004) 313-321, https://doi.org/10.1109/tns.2004.825090. 
  29. C.-J. Lee, K.J. Lee, Application of Bayesian network to the probabilistic risk assessment of nuclear waste disposal, Reliab. Eng. Syst. Saf. 91 (5) (2006) 515-532, https://doi.org/10.1016/j.ress.2005.03.011. 
  30. Y.D. Koo, H.S. Jo, K.H. Yoo, M.G. Na, Identification of Initial Events in Nuclear Power Plants Using Machine Learning Methods, Transactions of the Korean Nuclear Society Virtual Spring Meeting, 2020. 
  31. M.I. Radaideh, C. Pigg, T. Kozlowski, Y. Deng, A. Qu, Neural-based time-series forecasting of loss of coolant accidents in nuclear power plants, Expert Syst. Appl. 160 (2020), 113699, https://doi.org/10.1016/j.eswa.2020.113699. 
  32. J. Jokiniemi, Steam Generator Tube Rupture Scenarios - Europa, 2000. Retrieved March 3, 2022, from, https://cordis.europa.eu/docs/projects/files/FIKS/FIKS-CT-1999-00007/66628891-6_en.pdf. 
  33. Z. Koszela, L. Sokolowski, Thermal-hydraulic analysis of single and multiple steam generator tube ruptures in a typical 3-loop PWR, J. Power Technol. 95 (3) (2015). 
  34. J. Bang, G.H. Choi, D.-W. Jerng, S.-W. Bae, S. Jang, S.J. Ha, Analysis of steam generator tube rupture accidents for the development of Mitigation Strategies, Nucl. Eng. Technol. 54 (1) (2022) 152-161, https://doi.org/10.1016/j.net.2021.07.032. 
  35. L.L.C. Innovative Systems Software, RELAP/SDAPSIM/MOD3.x User Reference Manual - Volume I - Advanced Fluid Systems Thermal Hydraulics Analysis, Innovative Systems Software LLC, 2020. 
  36. IAEA, Best Estimate Safety Analysis for Nuclear Power Plants: Uncertainty Evaluation. Safety Reports Series No. 52, IAEA, Vienna, 2008. 
  37. A. Prosek, B. Mavko, The state-of-the-art theory and applications of best-estimate plus uncertainty methods, Nucl. Technol. 158 (1) (2007) 69-79, https://doi.org/10.13182/nt07-1. 
  38. G.E. Wilson, B.E. Boyack, The role of the PIRT process in experiments, code development and code applications associated with Reactor Safety Analysis, Nucl. Eng. Des. 186 (1-2) (1998) 23-37, https://doi.org/10.1016/s0029-5493(98)00216-7. 
  39. B. Adams, W. Bohnhoff, K. Dalbey, M. Ebeida, J. Eddy, M. Eldred, R. Hooper, P. Hough, K. Hu, J. Jakeman, M. Khalil, K. Maupin, J. Monschke, E. Ridgway, A. Rushdi, D. Seidl, J. Stephens, J. Winokur, Dakota, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.15 User's Manual, 2021, https://doi.org/10.2172/1829573. 
  40. G.E. Wilson, C.D. Fletcher, C.B. Davis, Phenomena Identification and Ranking Tables for Westinghouse AP600 Small Break Loss-Of-Coolant Accident, Main Steam Line Break, and Steam Generator Tube Rupture Scenarios, 1997, https://doi.org/10.2172/501518. 
  41. S.H. Ahn, C.W. Huh, J.Y. Park, M.W. Kim, Y.J. Cho, Phenomena Identification and Rankings in Domestic PWR Accident Conditions, Transaction of the Korea Nuclear Society, Spring Meeting, Gyeongju, 2008. 
  42. B.-S. Youn, J.-H. Koh, D.-H. Lee, Development the DEC PIRT for APR1400 MSGTR, Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, 2017. 
  43. H. Glaeser, GRS method for uncertainty and sensitivity evaluation of code results and applications, Sci. Technol. Nucl. Install. 2008 (2008) 1-7, https://doi.org/10.1155/2008/798901. 
  44. L. Sabotinov, S. Lutsanycg, I. Kadendo, Primary LOCA in VVER-1000 by pressurizer PORV failure, in: BNS International Conference Nuclear Energy in Europe-Present and Future, 18-21 September. Bulgaria, 2013. 
  45. M. Marques, Best estimate plus uncertainty: safety studies at the conceptual design phase of the ASTRID demonstrator, in: Joint International Conference on Supercomputng in Nuclear Applications + Monte Carlo, October 27-31, Paris, 2013. 
  46. D.G. Kang, Analysis of LBLOCA using best estimate plus uncertainties for three-loop nuclear power plant power uprate, Ann. Nucl. Energy 90 (2016) 318-330, https://doi.org/10.1016/j.anucene.2015.12.017. 
  47. S.W. Lee, B.D. Chung, Y.-S. Bang, S.W. Bae, Analysis of uncertainty quantification method by comparing Monte-Carlo Method and wilks' formula, Nucl. Eng. Technol. 46 (4) (2014) 481-488, https://doi.org/10.5516/net.02.2013.047. 
  48. S. Akkermans, P. Nimmegeers, J.F. Van Impe, A tutorial on uncertainty propagation techniques for Predictive Microbiology Models: a critical analysis of state-of-the-art techniques, Int. J. Food Microbiol. 282 (2018) 1-8, https://doi.org/10.1016/j.ijfoodmicro.2018.05.027. 
  49. D.A. Fynan, Uncertainty Quantification for Reactor Safety Analysis, PhD Thesis, University of Michigan, 2014. 
  50. A. de Crecy, P. Bazin, H. Glaeser, T. Skorek, J. Joucla, P. Probst, K. Fujioka, B.D. Chung, D.Y. Oh, M. Kyncl, R. Pernica, J. Macek, R. Meca, R. Macian, F. D'Auria, A. Petruzzi, L. Batet, M. Perez, F. Reventos, Uncertainty and sensitivity analysis of the loft L2-5 test: results of the bemuse programme, Nucl. Eng. Des. 238 (12) (2008) 3561-3578, https://doi.org/10.1016/j.nucengdes.2008.06.004. 
  51. A. Guba, M. Makai, L. Pal, Statistical aspects of best estimate method-I, Reliab. Eng. Syst. Saf. 80 (3) (2003) 217-232, https://doi.org/10.1016/s0951-8320(03)00022-x. 
  52. M.D. McKay, R.J. Beckman, W.J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics 21 (2) (1979) 239, https://doi.org/10.2307/1268522. 
  53. USNRC, USNRC Regulatory Guide 1.157, Best Estimate Calculation of Emergency Core Cooling System Performance, U.S Office of Nuclear Regulatory Research, 1989. 
  54. S.S. Wilks, Determination of sample sizes for setting tolerance limits, Ann. Math. Stat. 12 (1) (1941) 91-96, https://doi.org/10.1214/aoms/1177731788. 
  55. S. Siami-Namini, N. Tavakoli, A. Siami Namin, A comparison of Arima and LSTM in forecasting time series, in: 2018 17th IEEE International Conference On Machine Learning And Applications (ICMLA), 2018, https://doi.org/10.1109/icmla.2018.00227. 
  56. P.J. Werbos, Backpropagation through time: what it does and how to do it, Proc. IEEE 78 (10) (1990) 1550-1560, https://doi.org/10.1109/5.58337. 
  57. A.F. Agarap, Deep Learning Using Rectified Linear Units (ReLU), ArXiv, 2018. 
  58. S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8) (1997) 1735-1780, https://doi.org/10.1162/neco.1997.9.8.1735. 
  59. K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio, On the properties of neural machine translation: encoder-decoder approaches, in: Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, 2014, https://doi.org/10.3115/v1/w14-4012. 
  60. Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436-444, https://doi.org/10.1038/nature14539. 
  61. T.N. Sainath, O. Vinyals, A. Senior, H. Sak, Convolutional, long short-term memory, fully connected deep neural networks, in: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, https://doi.org/10.1109/icassp.2015.7178838. 
  62. W. Lu, J. Li, Y. Li, A. Sun, J. Wang, A CNN-LSTM-based model to forecast stock prices, Complexity 2020 (2020) 1-10, https://doi.org/10.1155/2020/6622927. 
  63. L. Ji, Y. Zou, K. He, B. Zhu, Carbon futures price forecasting based with Arima-CNN-LSTM model, Proc. Comput. Sci. 162 (2019) 33-38, https://doi.org/10.1016/j.procs.2019.11.254. 
  64. I.E. Livieris, E. Pintelas, P. Pintelas, A CNNeLSTM model for gold price time-series forecasting, Neural Comput. Appl. 32 (23) (2020) 17351-17360, https://doi.org/10.1007/s00521-020-04867-x. 
  65. P.K. Gabriel, On the application of multivariate times series models, J. Phys. Sci. Technol. 8 (10) (2015) 51-62. 
  66. J. du Preez, S.F. Witt, Univariate versus multivariate time series forecasting: an application to international tourism demand, Int. J. Forecast. 19 (3) (2003) 435-451, https://doi.org/10.1016/s0169-2070(02)00057-2. 
  67. Autonomio Talos [Computer software], Retrieved from, http://github.com/autonomio/talos, 2020. 
  68. J. Brownlee, How To Get Reproducible Results with Keras. MachineLearningMastery.Com, 2019, August 19. Retrieved March 19, 2023, from, https://machinelearningmastery.com/reproducible-results-neural-networkskeras/. 
  69. M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi, U.R. Acharya, V. Makarenkov, S. Nahavandi, A review of uncertainty quantification in Deep learning: techniques, applications and challenges, Inf. Fusion 76 (2021) 243-297, https://doi.org/10.1016/j.inffus.2021.05.008. 
  70. L.V. Jospin, H. Laga, F. Boussaid, W. Buntine, M. Bennamoun, Hands-on bayesian neural networks-a tutorial for deep learning users, IEEE Comput. Intell. Mag. 17 (2) (2022) 29-48, https://doi.org/10.1109/mci.2022.3155327. 
  71. Y. Gal, Z. Ghahramani, Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, 2016. 
  72. F. D'Auria, A. Salah, A. Petruzzi, A. Del Nevo, State of the art in using best estimate calculation tools in nuclear technology, Nucl. Eng. Technol. 38 (2006). 
  73. S. van der Walt, S.C. Colbert, G. Varoquaux, The NumPy array: a structure for efficient numerical computation, Comput. Sci. Eng. 13 (2) (2011) 22-30, https://doi.org/10.1109/mcse.2011.37. 
  74. Y.G. Cinar, H. Mirisaee, P. Goswami, E. Gaussier, A. Ait-Bachir, Period-aware content attention RNNS for time series forecasting with missing values, Neurocomputing 312 (2018) 177-186, https://doi.org/10.1016/j.neucom.2018.05.090. 
  75. F.-C. Chen, M.R. Jahanshahi, NB-CNN: deep Learning-based crack detection using convolutional neural network and naive Bayes Data Fusion, IEEE Trans. Ind. Electron. 65 (5) (2018) 4392-4400, https://doi.org/10.1109/tie.2017.2764844. 
  76. IAEA, Emerging Technologies Workshop: Insight and Actionable Ideas for Key Safeguards Challenge, International Atomic Energy Agency, Vienna, 2020. 
  77. S. Il Kim, H. Seok Kang, Y. Su Na, E. Hyun Ryu, R. Joon Park, J. Hwan Park, Y. Mann Song, J.H. Song, S. Wan Hong, Analysis of steam generator tube rupture accident for OPR 1000 nuclear power plant, Nucl. Eng. Des. 382 (2021), 111403, https://doi.org/10.1016/j.nucengdes.2021.111403. 
  78. S. Il Kim, C. Wan Kang, J. Hyeok Kim, K. Han Park, J. Yun Oh, B. Hee Lee, K. Soon Ha, S. Ho Hong, Evaluation of aerosol retention inside a steam generator under steam generator tube rupture accident conditions, Nucl. Eng. Des. 396 (2022), 111899, https://doi.org/10.1016/j.nucengdes.2022.111899. 
  79. Y. Lee, B. Kim, H.C. No, Improving safety margin of IWRS by rethinking the Emergency Core Cooling System criteria and safety system capacity, Nucl. Eng. Des. 307 (2016) 402-410, https://doi.org/10.1016/j.nucengdes.2016.06.039. 
  80. B. Lee, S.-I. Kim, K.S. Ha, Separate and integral effect tests of aerosol retention in steam generator during tube rupture accident, Nucl. Eng. Technol. 54 (7) (2022) 2702-2713, https://doi.org/10.1016/j.net.2022.01.014. 
  81. T. Lind, S. Campbell, L.E. Herranz, M. Kissane, J.H. Song, A summary of fission-product-transport phenomena during SGTR severe accidents, Nucl. Eng. Des. 363 (2020), 110635, https://doi.org/10.1016/j.nucengdes.2020.110635. 
  82. R.P. Martin, L.D. O'Dell, AREVA's realistic large break LOCA Analysis Methodology, Nucl. Eng. Des. 235 (16) (2005) 1713-1725, https://doi.org/10.1016/j.nucengdes.2005.02.004. 
  83. P. Mazgaj, P. Darnowski, A. Kaszko, J. Hortal, M. Dusic, R. Mendizꠑ abal, F. Pelayo, Demonstration of the E-BEPU methodology for SL-Loca in a gen-III PWR reactor, Reliab. Eng. Syst. Saf. 226 (2022), 108707, https://doi.org/10.1016/j.ress.2022.108707. 
  84. S.G.K. Patro, K.K. sahu, Normalization: a preprocessing stage, IARJSET 20-22 (2015), https://doi.org/10.17148/iarjset.2015.2305. 
  85. P. Razvan, T. Mikolov, Y. Bengio, On the Difficulty of Training Recurrent Neural Networks, International Conference on Machine Learning, 2013. 
  86. Alketbi Salama, Aya Diab, Using artificial intelligence to identify the success window of FLEX strategy under an extended station blackout, Nucl. Eng. Des. 382 (2021), 111368, https://doi.org/10.1016/j.nucengdes.2021.111368. ISSN 0029-5493. 
  87. K. Zhou, W.Y. Wang, T. Hu, C.H. Wu, Comparison of time series forecasting based on Statistical ARIMA model and LSTM with attention mechanism, J. Phys. Conf. 1631 (1) (2020), 012141, https://doi.org/10.1088/1742-6596/1631/1/012141. 
  88. S. Sadek, D. Grgic, C. Allison, M. Perez-Ferragut, Uncertainty study of the in-vessel phase of a severe accident in a pressurized water reactor, Energies 15 (5) (2022) 1842, https://doi.org/10.3390/en15051842. 
  89. B.E. Boyack, I. Catton, R.B. Duffey, P. Griffith, K.R. Katsma, G.S. Lellouche, S. Levy, U.S. Rohatgi, G.E. Wilson, W. Wulff, N. Zuber, Quantifying Reactor Safety Margins Part 1: An overview of the code scaling, applicability, and uncertainty evaluation methodology, Nucl. Eng. Des. 119 (1) (1990) 1-15. https://doi.org/10.1016/0029-5493(90)90071-5. 
  90. Jin Ho Song, ByungHee Lee, Sung Il Kim, Kwang Soon Ha, An analysis on the steam generator tube rupture events with core damage, Ann. Nucl. Energy 150 (2021) 107877, https://doi.org/10.1016/j.anucene.2020.107877. 
  91. Z. Yang, P. Xu, B. Zhang, C. Xu, L. Zhang, H. Xie, Q. Duan, Nuclear power plant sensor signal reconstruction based on Deep Learning Methods, Ann. Nucl. Energy 167 (2022) 108765. https://doi.org/10.1016/j.anucene.2021.108765. 
  92. Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization, The 3rd International Conference for Learning Representations, San Diego, 2015, https://doi.org/10.48550/arXiv.1412.6980 (arXiv:1412.6980 [cs.LG]). 
  93. C.S. Lee, Y.K. Jin, S.W. Kim, C.J. Choi, S.Y. Lee, J.T. Seo, Best Estimate Evaluation of Steam Line Break Accident Using Uncertainty Quantification Method, in: Proceedings of the Korean Nuclear Society Autumn Meeting Yongpyong, Korea, 2003. 
  94. Korea Electric Power Corporation (KEPCO) and Korea Hydro and Nuclear Power (KHNP), Design Control Document Chapter 15: Transient and Accident Analysis, 2018. APR1400-K-X-FS-14002-NP.