DOI QR코드

DOI QR Code

Homogenized cross-section generation for pebble-bed type high-temperature gas-cooled reactor using NECP-MCX

  • Shuai Qin (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Yunzhao Li (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Qingming He (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Liangzhi Cao (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Yongping Wang (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Yuxuan Wu (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Hongchun Wu (School of Nuclear Science and Technology, Xi'an Jiaotong University)
  • 투고 : 2023.03.12
  • 심사 : 2023.05.22
  • 발행 : 2023.09.25

초록

In the two-step analysis of Pebble-Bed type High-Temperature Gas-Cooled Reactor (PB-HTGR), the lattice physics calculation for the generation of homogenized cross-sections is based on the fuel pebble. However, the randomly-dispersed fuel particles in the fuel pebble introduce double heterogeneity and randomness. Compared to the deterministic method, the Monte Carlo method which is flexible in geometry modeling provides a high-fidelity treatment. Therefore, the Monte Carlo code NECP-MCX is extended in this study to perform the lattice physics calculation of the PB-HTGR. Firstly, the capability for the simulation of randomly-dispersed media, using the explicit modeling approach, is developed in NECP-MCX. Secondly, the capability for the generation of the homogenized cross-section is also developed in NECP-MCX. Finally, simplified PB-HTGR problems are calculated by a two-step neutronics analysis tool based on Monte Carlo homogenization. For the pebble beds mixed by fuel pebble and graphite pebble, the bias is less than 100 pcm when compared to the high-fidelity model, and the bias is increased to 269 pcm for pebble bed mixed by depleted fuel pebble. Numerical results show that the Monte Carlo lattice physics calculation for the two-step analysis of PB-HTGR is feasible.

키워드

과제정보

This work is financially supported by the National Natural Science Foundation of China (U2067209), the Young Elite Scientists Sponsorship Program by CAST (2019QNRC001) and the Innovative Scientific Program of CNNC.

참고문헌

  1. Z. Zhang, Z. Wu, Y. Sun, F. Li, Design aspects of the Chinese modular high-temperature gas-cooled reactor HTR-PM, Nucl. Eng. Des. 236 (5-6) (2006) 485-490, https://doi.org/10.1016/j.nucengdes.2005.11.024.
  2. R. Gontard, H. Nabielek, Performance Evaluation of Modern HTR TRISO Fuels (No. KFA-HTA-IB-5/90), Kernforschungsanlage Julich GmbH, 1990.
  3. E. Teuchert, U. Hansen, K.A. Haas, VSOP-computer Code System for Reactor Physics and Fuel Cycle Simulation (No. JUEL-1649), Kernforschungsanlage Juelich GmbH, 1980 (Germany).
  4. G.D. Joanou, J.S. Dudek, GAM-1: A CONSISTENT P1 Multigroup Code for the Calculation of Fast Neutron Spectra and Multigroup Constants (No. GA-1850), General Atomic Div., General Dynamics Corp., San Diego, Calif, 1961.
  5. H.C. Honeck, THERMOS: A Thermalization Transport Theory Code for Reactor Lattice Calculation, 1961. BNL-5826.
  6. L.W. Nordheim, A Program of Research and Calculations of Resonance Absorption. Final Report (No. GA-2527), General Atomic Div., General Dynamics Corp., San Diego, Calif, 1961.
  7. S.M. Dancoff, M. Ginsburg, Surface resonance absorption in a close-packed lattice, United States Atomic Energy Commission (1944) (Technical Information Service Extension).
  8. M. Ding, B. Boer, J.L. Kloosterman, D. Lathouwers, Evaluation of experiments in the AVR with the DALTONeTHERMIX coupled code system, Nucl. Eng. Des. 239 (12) (2009) 3105-3115, https://doi.org/10.1016/j.nucengdes.2009.09.028.
  9. E.E. Bende, A.H. Hogenbirk, J.L. Kloosterman, H. Van Dam, Analytical calculation of the average Dancoff factor for a fuel kernel in a pebble bed high-temperature reactor, Nucl. Sci. Eng. 133 (2) (1999) 147-162, https://doi.org/10.13182/NSE99-A2078.
  10. H.D. Gougar, A.M. Ougouag, W.K. Terry, K.N. Ivanov, Automated design and optimization of pebble-bed reactor cores, Nucl. Sci. Eng. 165 (3) (2010) 245-269, https://doi.org/10.13182/NSE08-89.
  11. J.L. Kloosterman, A.M. Ougouag, Comparison and extension of Dancoff factors for pebble-bed reactors, Nucl. Sci. Eng. 157 (1) (2007) 16-29, https://doi.org/10.13182/NSE07-A2710.
  12. F. Bostelmann, C. Celik, M.L. Williams, R.J. Ellis, G. Ilas, W.A. Wieselquist, SCALE capabilities for high temperature gas-cooled reactor analysis, Ann. Nucl. Energy 147 (2020), 107673, https://doi.org/10.1016/j.anucene.2020.107673.
  13. D. She, J. Guo, Z. Liu, L. Shi, PANGU code for pebble-bed HTGR reactor physics and fuel cycle simulations, Ann. Nucl. Energy 126 (2019) 48-58, https://doi.org/10.1016/j.anucene.2018.11.005.
  14. D. She, Z. Liu, L. Shi, XPZ: development of a lattice code for HTR, Ann. Nucl. Energy 97 (2016) 183-189, https://doi.org/10.1016/j.anucene.2016.07.017.
  15. R. Sanchez, G.C. Pomraning, A statistical analysis of the double heterogeneity problem, Ann. Nucl. Energy 18 (7) (1991) 371-395, https://doi.org/10.1016/0306-4549(91)90073-7.
  16. M. Grimod, Neutronic modeling of pebble bed reactors in APOLLO2. PhD. Universite de Paris Sud XI, 2010.
  17. Y. Liang, Q. Zhang, L. Liang, J. Zhang, S. Li, Q. Zhao, Evaluation of the MOC based on the Sanchez-Pomraning method for double heterogeneity system, Ann. Nucl. Energy 151 (2021), 107922, https://doi.org/10.1016/j.anucene.2020.107922.
  18. A.E. Kruglikov, M.V. Shchurovskaya, Y.N. Volkov, V.A. Nevinitsa, P.A. Fomichenko, M.N. Zizin, Homogenised group constants generation using Monte Carlo codes for diffusion calculation of pebble bed reactor, in: Journal of Physics: Conference Series vol. 1689, IOP Publishing, 2020, November, 012026, 1.
  19. M.A. Kalugin, D.S. Oleynik, D.A. Shkarovsky, Overview of the MCU Monte Carlo software package, Ann. Nucl. Energy 82 (2015) 54-62, https://doi.org/10.1016/j.anucene.2014.08.032.
  20. J. Leppanen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150, https://doi.org/10.1016/j.anucene.2014.08.024.
  21. J. Ortensi, P. Balestra, Initial Study on Cross Section Generation Requirements for a PBR Equilibrium Core (No. INL/EXT-21-64242-Rev000), Idaho National Lab.(INL), Idaho Falls, ID, 2022 (United States).
  22. J. Wang, Z. Li, M. Ding, Generation method and verification of pebble type VHTR multigroup cross sections based on OpenMC, Ann. Nucl. Energy 159 (2021), 108316, https://doi.org/10.1016/j.anucene.2021.108316.
  23. Q. He, Q. Zheng, J. Li, H. Wu, W. Shen, L. Cao, Z. Liu, J. Xu, NECP-MCX: a hybrid Monte-Carlo-deterministic particle-transport code for the simulation of deep-penetration problems, Ann. Nucl. Energy 151 (2021), 107978, https://doi.org/10.1016/j.anucene.2020.107978.
  24. F.B. Brown, W.R. Martin, Stochastic geometry capability in MCNP5 for the analysis of particle fuel, Ann. Nucl. Energy 31 (17) (2004) 2039-2047, https://doi.org/10.1016/j.anucene.2004.08.006.
  25. G.B. Zimmerman, M.L. Adams, Algorithms for Monte-Carlo Particle Transport in Binary Statistical Mixtures (No. UCRL-JC-108010; CONF-911107-24), Lawrence Livermore National Lab., CA (United States), 1991.
  26. B. Widom, Random sequential addition of hard spheres to a volume, J. Chem. Phys. 44 (10) (1966) 3888-3894, https://doi.org/10.1063/1.1726548.
  27. W.S. Jodrey, E.M. Tory, Computer simulation of close random packing of equal spheres, Phys. Rev. 32 (4) (1985) 2347, https://doi.org/10.1103/PhysRevA.32.2347.
  28. C. Liang, W. Ji, Optimization of Monte Carlo transport simulations in stochastic media, Proc. Int. Topl. Mtg. Advances in Reactor Physics, Education (PHYSOR 2012) (2012) 15-20.
  29. P.K. Romano, N.E. Horelik, B.R. Herman, A.G. Nelson, B. Forget, K. Smith, OpenMC: a state-of-the-art Monte Carlo code for research and development, Ann. Nucl. Energy 82 (2015) 90-97, https://doi.org/10.1016/j.anucene.2014.07.048.
  30. D. She, B. Xia, J. Guo, C.L. Wei, J. Zhang, F. Li, L. Shi, Z.Y. Zhang, Prediction calculations for the first criticality of the HTR-PM using the PANGU code, Nucl. Sci. Tech. 32 (9) (2021) 1-7, https://doi.org/10.1007/s41365-021-00936-5.
  31. E.L. Redmond, Multigroup Cross Section Generation via Monte Carlo Methods, Doctoral dissertation, Massachusetts Institute of Technology, 1997.
  32. L. Cai, Condensation and Homogenization of Cross Sections for the Deterministic Transport Codes with Monte Carlo Method: Application to the GEN IV Fast Neutron Reactors, Doctoral dissertation, 2014 (Universite Paris Sud-Paris XI)).
  33. J. Leppanen, M. Pusa, E. Fridman, Overview of methodology for spatial homogenization in the Serpent 2 Monte Carlo code, Ann. Nucl. Energy 96 (2016) 126-136, https://doi.org/10.1016/j.anucene.2016.06.007.
  34. S. Choi, K. Smith, H.C. Lee, D. Lee, Impact of inflow transport approximation on light water reactor analysis, J. Comput. Phys. 299 (2015) 352-373, https://doi.org/10.1016/j.jcp.2015.07.005.
  35. Z. Liu, Cumulative Migration Method for Computing Multi-Group Transport Cross Sections and Diffusion Coefficients with Monte Carlo Calculations, Doctoral dissertation, Massachusetts Institute of Technology, 2020.
  36. M. Ryu, Y.S. Jung, C.H. Lim, H.G. Joo, Incorporation of anisotropic scattering in nTRACER, in: Transactions of the Korean Nuclear Society Autumn Meeting, 2014, October (Pyeongchang, Korea).
  37. A. Hebert, Re finement of the Santamarina-Hfaiedh energy mesh between 22.5 eV and 11.4 keV, in: International Conference on the Physics of Reactors, Interlaken, Switzerland, 2008, September.
  38. N.H. Hudson, A.M. Ougouag, F. Rahnema, H. Gougar, A Pebble Bed Reactor cross section methodology, Ann. Nucl. Energy 36 (8) (2009) 1138-1150, https://doi.org/10.1016/j.anucene.2009.04.013.
  39. D. She, Z. Liu, J. Guo, L. Shi, Leakage correction in group-constant generation for pebble-bed HTGRs, Prog. Nucl. Energy 105 (2018) 76-82, https://doi.org/10.1016/j.pnucene.2017.12.015.
  40. Q. Wang, D. She, B. Xia, L. Shi, Evaluation of pebble-bed homogenized cross sections in HTGR fuel cycle simulations, Prog. Nucl. Energy 117 (2019), 103041, https://doi.org/10.1016/j.pnucene.2019.103041.
  41. J. Lieberoth, A. Stojadinovic, Neutron streaming in pebble beds, Nucl. Sci. Eng. 76 (3) (1980) 336-344, https://doi.org/10.13182/NSE80-A21324.
  42. Y. Wen, D. She, L. Shi, An improved homogenization method for the treatment of strong absorbers in pebble-bed HTGR, Ann. Nucl. Energy 170 (2022), 108983, https://doi.org/10.1016/j.anucene.2022.108983.