DOI QR코드

DOI QR Code

Evaluation of neutron attenuation properties using helium-4 scintillation detector for dry cask inspection

  • Jihun Moon (The Nuclear Safety and Security Commission) ;
  • Jisu Kim (Korea Institute of Nuclear Non-proliferation and Control) ;
  • Heejun Chung (Korea Institute of Nuclear Non-proliferation and Control) ;
  • Sung-Woo Kwak (Korea Institute of Nuclear Non-proliferation and Control) ;
  • Kyung Taek Lim (Quantum and Nuclear Engineering, Sejong University)
  • Received : 2022.09.26
  • Accepted : 2023.06.22
  • Published : 2023.09.25

Abstract

In this paper, we demonstrate the neutron attenuation of dry cask shielding materials using the S670e helium-4 detector manufactured by Arktis Radiation Ltd. In particular, two materials expected to be applied to the TN-32 dry cask manufactured by ORANO Korea and KORAD-21 by the Korea Radioactive Waste Agency (KORAD) were utilized. The measured neutron attenuation was compared with our Monte Carlo N-Particle Transport simulation results, and the difference is given as the root mean square (RMS). For the fast neutron case, a rapid decline in neutron counts was observed as a function of increasing material thickness, exhibiting an exponential relationship. The discrepancy between the experimentally acquired data and simulation results for the fast neutron was maintained within a 2.3% RMS. In contrast, the observed thermal neutron count demonstrated an initial rise, attained a maximum value, and exhibited an exponential decline as a function of increasing thickness. In particular, the discrepancy between the measured and simulated peak locations for thermal neutrons displayed an RMS deviation of approximately 17.3-22.4%. Finally, the results suggest that a minimum thickness of 5 cm for Li-6 is necessary to achieve a sufficiently significant cross-section, effectively capturing incoming thermal neutrons within the dry cask.

Keywords

Acknowledgement

This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using financial resources granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No. 2106016) and by the faculty research fund of Sejong University in 2022 of the Republic of Korea.

References

  1. C. Braun, R. Forrest, Consideration regarding ROK spent nuclear fuel management options, Nucl. Eng. Technol. 45 (2013) 427-438. https://doi.org/10.5516/NET.06.2013.708
  2. M. Fang, et al., Quantitative imaging and automated fuel pin identification for passive gamma emission tomography, Sci. Rep. 11 (2021) 2442.
  3. A.J. Hurd, R.T. Kouzes, Why new neutron detector materials must replace helium-3, The European Physical Journal Plus 129 (2014) 236.
  4. The High Neutron Mapping System In-Field Measurements in 2008, Los Alamos National Laboratory, 2009.
  5. F. Piscitelli, G. Mauri, A. Laloni, R. Hall-Wilton, Verification of He-3 proportional counters' fast neutron sensitivity through a comparison with He-4 detectors, The European Physical Journal Plus 135 (2020) 577.
  6. J.M. Lewis, R.P. Kelley, D. Murer, K.A. Jordan, Fission signal detection using helium-4 gas fast neutron scintillation detectors, Appl. Phys. Lett. 105 (2014), 014102.
  7. A. Enqvist, Used Fuel Storage Monitoring Using Helium-4 Scintillation Fast Neutron Detectors and Neutron Spectral Analysis, United States, 2019, p. 76.
  8. D. Murer, et al., MOX Assay Using He-4 Scintillation Detectors, SPIE, 2012.
  9. P. Tancioni, et al., Fast neutron dose rate monitoring using off the shelf Helium-4 scintillation detectors, The International Journal of Nuclear Safeguards and Nonproliferation 62 (2021) 35-42.
  10. M. Manolopoulou, et al., Studies on the response of 3He and 4He proportional counters to monoenergetic fast neutrons, Nucl. Instrum. Methods Phys. Res. 562 (2006) 371-379. https://doi.org/10.1016/j.nima.2006.02.040
  11. K.T. Lim, et al., The feasibility of passive neutron measurement for dry storage safeguards approach, IEEE Trans. Nucl. Sci. 69 (2022) 1331-1335. https://doi.org/10.1109/TNS.2022.3149322
  12. W. Choi, et al., Current Status of Korean Multi-Modal Transportation Test (MMTT), Transactions of the Korean Nuclear Society, 2020.
  13. TN-32 Dry Storage Cask System Safety Evaluation Report, Transnuclear, Inc, 2000.
  14. S.R. Greene, J.S. Medford, S.A. Macy, Storage and Transport Cask Data for Used Commercial Nuclear Fuel, United States, 2013.
  15. A.S. Mollah, G.U. Ahmad, S.R. Husain, Measurements of neutron shielding properties of heavy concretes using a Cf-252 source, Nucl. Eng. Des. 135 (1992) 321-325. https://doi.org/10.1016/0029-5493(92)90199-6
  16. D.R. McAlister, Neutron Shielding Materials, PG Research Foundation, Inc., 2016.
  17. H. Kang, C. Park, K. Seo, J. Yoon, Evaluation of neutron shielding effects on various materials by using a Cf-252 source, J. Kor. Phys. Soc. 52 (2008) 1744-1747. https://doi.org/10.3938/jkps.52.1744
  18. R. Chandra, G. Davatz, H. Friederich, U. Gendotti, D. Murer, Fast neutron detection with pressurized 4He scintillation detectors, J. Instrum. 7 (2012). C03035-C03035. https://doi.org/10.1088/1748-0221/7/03/C03035
  19. Y. Liang, T. Zhu, A. Enqvist, Timing characterization of helium-4 fast neutron detector with EJ-309 organic liquid scintillator, EPJ Web Conf. 170 (2018), 07005.
  20. R.P. Kelley, et al., Measurement of the fast neutron response for 4He scintillation detectors using a coincidence scattering method, IEEE Trans. Nucl. Sci. 63 (3) (2016) 1600-1607, https://doi.org/10.1109/TNS.2016.2521699.
  21. R.P. Kelley, A. Enqvist, K.A. Jordan, Pulse shape discrimination in helium-4 scintillation detectors, Nucl. Instrum. Methods Phys. Res. 830 (2016) 44-52. https://doi.org/10.1016/j.nima.2016.05.065
  22. A. Biekert, S.A. Hertel, E. Huebler, J. Lin, H.D. Pinckney, R.K. Romani, A. Serafin, V. Velan, D.N. McKinsey, Nuclear recoil scintillation linearity of a high pressure 4He gas detector, J. Instrum. 14 (2019). P10028-P10028. https://doi.org/10.1088/1748-0221/14/10/P10028
  23. R.P. Kelley, L.M. Rolison, J.M. Lewis, D. Murer, T.N. Massey, A. Enqvist, K.A. Jordan, Neutron Response Function Characterization of 4He Scintillation Detectors, vol. 793, 2015.
  24. C. Barker, T. Zhu, L. Rolison, S. Kiff, K. Jordan, A. Enqvist, Pulse shape analysis and discrimination for silicon-photomultipliers in helium-4 gas scintillation neutron detector, EPJ Web Conf. 170 (2018), 07002.
  25. D. Kook, J. Choi, J. Kim, Y. Kim, Review of spent fuel integrity evaluation for dry storage, Nucl. Eng. Technol. 45 (2013) 115-124. https://doi.org/10.5516/NET.06.2012.016
  26. A.R.D. Ltd, Arktis S670(e) Detector series Operating Manual, Arktis Radiation Detector Ltd., 2018.
  27. D.A. Brown, et al., ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148 (2018) 1-142. https://doi.org/10.1016/j.nds.2018.02.001
  28. C.J. Werner (Ed.), MCNP Users' Manual - Code Version 6.2, Los Alamos National Laboratory, 2017.