DOI QR코드

DOI QR Code

Comparison of Hardness and Damping Capacities of Mg-Al Alloy Subjected to T6 Heat Treatment and Low Temperature Long Term Isothermal Aging

T6 열처리 및 저온 장시간 등온 시효한 Mg-Al 합금의 경도 및 진동감쇠능 비교

  • Joong-Hwan Jun (Industrial Materials Processing R&D Department, Korea Institute of Industrial Technology)
  • 전중환 (한국생산기술연구원 산업소재공정연구부문)
  • Received : 2023.08.31
  • Accepted : 2023.09.13
  • Published : 2023.09.30

Abstract

Hardness and damping characteristics of fine discontinuous precipitates (DPs) microstructure generated by low temperature long term isothermal aging were investigated in comparison with those of T6 heat-treated microstructure composed of DPs and continuous precipitates (CPs) in Mg-9%Al alloy. In this study, T6 and fine DPs microstructures were obtained by isothermal aging at 453 K for 24 h and at 413 K for 336 h, respectively, after solution treatment at 693 K for 24 h. The DPs microstructure exhibited higher hardness than the T6 microstructure, which is related to the lower (α + β) interlamellar spacing of the DPs. The DPs microstructure possessed better damping capacity than the T6 microstructure in the strain-amplitude independent region, whereas in the strain-amplitude dependent region, the reverse behavior was observed. The damping tendencies depending on strain-amplitude were discussed based on the microstructural features of the T6 and DPs microstructures.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1049912).

References

  1. S. Jayasathyakawin, M. Ravichandran, N. Baskar, C. Anand Chairman, and R. Balasundaram: Mater. Today Proc. 27 (2020) 909.
  2. V. V. Ramalingam, P. Ramasamy, M. D. Kovukkal, and G. Myilsamy: Metal. Mater. Inter. 26 (2020) 409.
  3. J. Song, J. She, D. Chen, and F. Pan: J. Magnes. Alloy 8 (2020) 1.
  4. J. Hao, J. Zhang, H. Wang, W. Cheng, and Y. Bai: J. Mater. Res. Tech. 19 (2022) 1650.
  5. E. Gerashi, M. Asadollahi, R. Alizadeh, and R. Mahmudi: Mater. Sci. Eng. A 843 (2022) 143127.
  6. H. Xue, S. Liu, W. Xie, Y. Zhou, J. Peng, H. Pan, D. Zhang, and F. Pan: Mater. Char. 187 (2022) 111874.
  7. D. He, Y. Li, Y. Zheng, X. Yue, Y. Wu, X. Xue, H. Yu, W. Li, and Y. Li: J. Alloy. Compd. 887 (2021) 161317.
  8. J. H. Zhang, K. B. Nie, K. K. Deng, X. Z. Han, and Z. D. Wang: Mater. Sci. Eng. A 838 (2022) 142562. https://doi.org/10.1016/j.msea.2021.142562
  9. Z. Zareian, M. Emamy, M. Malekan, H. Mirzadeh, W. J. Kim and A. Bahmani: Mater. Sci. Eng. A 774 (2020) 138929.
  10. X. Hua, Q. Yang, D. Zhang, F. Meng, C. Chen, Z. You, J. Zhang, S. Lv, and J. Meng: J. Mater. Sci. Tech. 53 (2020) 174.
  11. J. F. Nie : Metall. Mater. Trans. A 43 (2012) 3891.
  12. S. Tang, T. Xin, W. Xu, D. Miskovic, G. Sha, Z. Quadir, S. Ringer, K. Nomoto, N. Birbilis, and M. Ferry: Nat. Comm. 10 (2019) 1.
  13. C. M. Cepeda-Jimenez, M. Castillo-Rodriguez, and M. T. Perez-Prado: Acta Mater. 165 (2019) 164.
  14. C. R. Hutchinson, J. F. Nie and S. Gorsse: Metall. Mater. Trans. A 36A (2005) 2093. https://doi.org/10.1007/s11661-005-0330-x
  15. K. N. Braszczynska-Malik : J. Alloy. Compd. 477 (2009) 870.
  16. S. Celotto : Acta Mater. 48 (2000) 1775.
  17. M. X. Zhang and P. M. Kelly: Scripta Mater. 48 (2003) 647.
  18. K. Fujii, K. Matsuda, T. Gonoji, K. Watanabe, T. Kawabata, Y. Uetani and S. Ikeno: Mater. Trans. 52 (2011) 340.
  19. S. Takeshita, C. Watanabe, R. Monzen and S. Saikawa: J. Jpn. Inst. Light Met. 64 (2014) 470.
  20. J. D. Robson: Acta Mater. 61 (2013) 7781.
  21. M. Thirumurugan and S. Kumaran: Trans. Nonferrous Met. Soc. China 23 (2013) 1595. https://doi.org/10.1016/S1003-6326(13)62636-9
  22. H. Yan and Z. Wang: J. Rare Earths 34 (2016) 308.
  23. M. Mokhtarishirazabad, M. Azadi, G. H. Farrahi, G. Winter, and W. Eichlseder: Mater. Sci. Eng. A 588 (2013) 357.
  24. W. Du, Y. Sun, X. Min, F. Xue, M. Zhu, and D. Wu: Mater. Sci. Eng. A 356 (2003) 1. https://doi.org/10.1016/S0921-5093(02)00551-8
  25. G. Yuan, G. You, S. Bai, and W. Guo: J. Alloys Compd. 766 (2018) 410.
  26. S. Liang, Y. Ma, R. Chen, and E. Han: Mater. Trans. 49 (2008) 986.
  27. M. Wu and S. Xiong: J. Mater. Sci. Tech. 27 (2011) 1150. https://doi.org/10.1016/S1005-0302(12)60011-5
  28. J. H. Jun: J. Alloy. Compd. 725 (2017) 237.
  29. J. H. Jun: J. Kor. Soc. Heat Treat. 31 (2018) 231.
  30. J. H. Jun: J. Kor. Soc. Heat Treat. 33 (2020) 219.
  31. J. H. Jun: J. Kor. Soc. Heat Treat. 33 (2020) 173.
  32. J. H. Jun: J. Kor. Soc. Heat Treat. 33 (2020) 271.
  33. J. H. Jun: J. Kor. Soc. Heat Treat. 34 (2021) 302.
  34. J. H. Jun: J. Kor. Soc. Heat Treat. 34 (2021) 218.
  35. J. G. Han and J. H. Jun: J. Kor. Soc. Heat Treat. 32 (2019) 249.
  36. C. Zener: Trans. AIME 167 (1946) 550.
  37. A. Granato and K. Lucke: J. Appl. Phys. 27 (1956) 583.
  38. A. Granato and K. Lucke: J. Appl. Phys. 27 (1956) 789.
  39. A. Granato and K. Lucke: J. Appl. Phys. 52 (1981) 7136.
  40. B. D. Trott and H. K. Birnbaum: J. Appl. Phys. 41 (1970) 4418.
  41. J. F. Shackelford: Introduction to Materials Science for Engineers (8th ed.), Pearson Higher Education Inc., NJ, 2015, pp. 93.
  42. C. Wang, Z. Cui, H. Liu, Y. Chen, W. Ding and S. Xian: Mater. Des. 84 (2015) 48.
  43. J. C. Slater: J. Chem. Phys. 41 (1964) 3199.
  44. Z. Zhang, X. Zeng and W. Ding: Mater. Sci. Eng. A 392 (2005) 150.