DOI QR코드

DOI QR Code

A Mutation of a Putative NDP-Sugar Epimerase Gene in Ralstonia pseudosolanacearum Attenuates Exopolysaccharide Production and Bacterial Virulence in Tomato Plant

  • Hyoung Ju Lee (Department of Applied Bioscience, Dong-A University) ;
  • Sang-Moo Lee (Institute of Agricultural Life Sciences, Dong-A University) ;
  • Minseo Choi (Department of Applied Bioscience, Dong-A University) ;
  • Joo Hwan Kwon (Department of Applied Bioscience, Dong-A University) ;
  • Seon-Woo Lee (Department of Applied Bioscience, Dong-A University)
  • 투고 : 2023.06.29
  • 심사 : 2023.08.21
  • 발행 : 2023.10.01

초록

Ralstonia solanacearum species complex (RSSC) is a soil borne plant pathogen causing bacterial wilt on various important crops, including Solanaceae plants. The bacterial pathogens within the RSSC produce exopolysaccharide (EPS), a highly complicated nitrogencontaining heteropolymeric polysaccharide, as a major virulence factor. However, the biosynthetic pathway of the EPS in the RSSC has not been fully characterized. To identify genes in EPS production beyond the EPS biosynthetic gene operon, we selected the EPS-defective mutants of R. pseudosolanacearum strain SL341 from Tn5-inserted mutant pool. Among several EPSdefective mutants, we identified a mutant, SL341P4, with a Tn5-insertion in a gene encoding a putative NDP-sugar epimerase, a putative membrane protein with sugar-modifying moiety, in a reverse orientation to EPS biosynthesis gene cluster. This protein showed similar to other NDP-sugar epimerases involved in EPS biosynthesis in many phytopathogens. Mutation of the NDP-sugar epimerase gene reduced EPS production and biofilm formation in R. pseudosolanacearum. Additionally, the SL341P4 mutant exhibited reduced disease severity and incidence of bacterial wilt in tomato plants compared to the wild-type SL341 without alteration of bacterial multiplication. These results indicate that the NDP-sugar epimerase gene is required for EPS production and bacterial virulence in R. pseudosolanacearum.

키워드

과제정보

This work was supported by National Research Foundation of Korea (NRF) grants to S.-W. L. (No. 2020R1A2C3005453 and 2020R1A6A1A03047729) and Green Fusion Technology Program funded by the Korea government (MSIT, MOE, ME), Republic of Korea.

참고문헌

  1. Araud-Razou, I., Vasse, J., Montrozier, H., Etchebar, C. and Trigalet, A. 1998. Detection and visualization of the major acidic exopolysaccharide of Ralstonia solanacearum and its role in tomato root infection and vascular colonization. Eur. J. Plant Pathol. 104:795-809. https://doi.org/10.1023/A:1008690712318
  2. Arlat, M., Gough, C. L., Zischek, C., Barberis, P. A., Trigalet, A. and Boucher, C. A. 1992. Transcriptional organization and expression of the large hrp gene cluster of Pseudomonas solanacearum. Mol. Plant-Microbe Interact. 5:187-193. https://doi.org/10.1094/MPMI-5-187
  3. Balatero, C. H., Hautea, D. M., Narciso, J. O. and Hanson, P. M. 2005. QTL mapping for bacterial wilt resistance in Hawaii 7996 using AFLP, RGA, and SSR markers. In: Bacterial wilt disease and the Ralstonia solanacearum species complex, eds. by C. Allen, P. Prior and A. C. Hayward, pp. 301-307. APS Press, St. Paul, MN, USA.
  4. Becker, A., Kleickmann, A., Kuster, H., Keller, M., Arnold, W. and Puhler, A. 1993. Analysis of the Rhizobium meliloti genes exoU, exoV, exoW, exoT, and exoI involved in exopolysaccharide biosynthesis and nodule invasion: exoU and exoW probably encode glucosyltransferases. Mol. Plant-Microbe Interact. 6:735-744. https://doi.org/10.1094/MPMI-6-735
  5. Becker, A., Niehaus, K. and Puhler, A. 1995. Low-molecularweight succinoglycan is predominantly produced by Rhizobium meliloti strains carrying a mutated ExoP protein characterized by a periplasmic N-terminal domain and a missing Cterminal domain. Mol. Microbiol. 16:191-203. https://doi.org/10.1111/j.1365-2958.1995.tb02292.x
  6. Botta, G. A., Arzese, A., Minisini, R. and Trani, G. 1994. Role of structural and extracellular virulence factors in gram-negative anaerobic bacteria. Clin. Infect. Dis. 18 Suppl 4:S260-S264. https://doi.org/10.1093/clinids/18.Supplement_4.S260
  7. Caldwell, D., Kim, B.-S. and Iyer-Pascuzzi, A. S. 2017. Ralstonia solanacearum differentially colonizes roots of resistant and susceptible tomato plants. Phytopathology 107:528-536. https://doi.org/10.1094/PHYTO-09-16-0353-R
  8. Capela, D., Marchetti, M., Clerissi, C., Perrier, A., Guetta, D., Gris, C., Valls, M., Jauneau, A., Cruveiller, S., Rocha, E. P. C. and Masson-Boivin, C. 2017. Recruitment of a lineagespecific virulence regulatory pathway promotes intracellular infection by a plant pathogen experimentally evolved into a legume symbiont. Mol. Biol. Evol. 34:2503-2521. https://doi.org/10.1093/molbev/msx165
  9. Chapman, M. R. and Kao, C. C. 1998. EpsR modulates production of extracellular polysaccharides in the bacterial wilt pathogen Ralstonia (Pseudomonas) solanacearum. J. Bacteriol. 180:27-34. https://doi.org/10.1128/JB.180.1.27-34.1998
  10. Choi, K., Choi, J., Lee, P. A., Roy, N., Khan, R., Lee, H. J., Weon, H. Y., Kong, H. G. and Lee, S.-W. 2020. Alteration of bacterial wilt resistance in tomato plant by microbiota transplant. Front. Plant Sci. 11:1186.
  11. Clough, S. J., Lee, K. E., Schell, M. A. and Denny, T. P. 1997. A two-component system in Ralstonia (Pseudomonas) solanacearum modulates production of PhcA-regulated virulence factors in response to 3-hydroxypalmitic acid methyl ester. J. Bacteriol. 179:3639-3648. https://doi.org/10.1128/jb.179.11.3639-3648.1997
  12. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. and Lappin-Scott, H. M. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49:711-745. https://doi.org/10.1146/annurev.mi.49.100195.003431
  13. Czolkoss, S., Safronov, X., Rexroth, S., Knoke, L. R., Aktas, M. and Narberhaus, F. 2021. Agrobacterium tumefaciens type IV and type VI secretion systems reside in detergent-resistant membranes. Front. Microbiol. 12:754486.
  14. Dalsing, B. L. and Allen, C. 2014. Nitrate assimilation contributes to Ralstonia solanacearum root attachment, stem colonization, and virulence. J. Bacteriol. 196:949-960. https://doi.org/10.1128/JB.01378-13
  15. de Pedro-Jove, R., Puigvert, M., Sebastia, P., Macho, A. P., Monteiro, J. S., Coll, N. S., Setubal, J. C. and Valls, M. 2021. Dynamic expression of Ralstonia solanacearum virulence factors and metabolism-controlling genes during plant infection. BMC Genomics 22:170. https://doi.org/10.1186/s12864-021-07457-w
  16. Denny, T. P. and Baek, S.-R. 1991. Genetic evidence that extracellular polysaccharide is a virulence factor of Pseudomonas solanacearum. Mol. Plant-Microbe Interact. 4:198-206. https://doi.org/10.1094/MPMI-4-198
  17. Denny, T. P. and Hayward, A. C. 2001. Gram-negative bacteria: Ralstonia. In: Laboratory guide for identification of plant pathogenic bacteria, eds. by N. W. Schaad, J. B. Jones and W. Chun, 3rd ed., pp. 151-174. APS Press, St. Paul, MN, USA.
  18. Fallarino, A., Mavrangelos, C., Stroeher, U. H. and Manning, P. A. 1997. Identification of additional genes required for Oantigen biosynthesis in Vibrio cholerae O1. J. Bacteriol. 179:2147-2153. https://doi.org/10.1128/jb.179.7.2147-2153.1997
  19. Fegan, M. and Prior, P. 2005. How complex is the Ralstonia solanacearum species complex. In: Bacterial wilt disease and the Ralstonia solanacearum species complex, eds. by C. Allen, P. Prior and A. C. Hayward, pp. 449-461. APS Press, St. Paul, MN, USA.
  20. Gatt, R. and Berman, E. R. 1966. A rapid procedure for the estimation of amino sugars on a micro scale. Anal. Biochem. 15:167-171. https://doi.org/10.1016/0003-2697(66)90262-4
  21. Genin, S. and Boucher, C. 2002. Ralstonia solanacearum: secrets of a major pathogen unveiled by analysis of its genome. Mol. Plant Pathol. 3:111-118. https://doi.org/10.1046/j.1364-3703.2002.00102.x
  22. Ghosh, P. K. and Maiti, T. K. 2016. Structure of extracellular polysaccharides (EPS) produced by rhizobia and their functions in legume-bacteria symbiosis: a review. Achiev. Life Sci. 10:136-143. https://doi.org/10.1016/j.als.2016.11.003
  23. Grangeasse, C., Obadia, B., Mijakovic, I., Deutscher, J., Cozzone, A. J. and Doublet, P. 2003. Autophosphorylation of the Escherichia coli protein kinase Wzc regulates tyrosine phosphorylation of Ugd, a UDP-glucose dehydrogenase. J. Biol. Chem. 278:39323-39329. https://doi.org/10.1074/jbc.M305134200
  24. Harimawan, A. and Ting, Y.-P. 2016. Investigation of extracellular polymeric substances (EPS) properties of P. aeruginosa and B. subtilis and their role in bacterial adhesion. Colloid Surf. B Biointerfaces 146:459-467. https://doi.org/10.1016/j.colsurfb.2016.06.039
  25. Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29:65-87. https://doi.org/10.1146/annurev.py.29.090191.000433
  26. Hayward, A. C. 1994. Systematics and phylogeny of Pseudomonas solanacearum and related bacteria. In: Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum, eds. by A. C. Hayward and G. L. Hartman, pp. 123-135. CAB International, Wallingford, UK.
  27. Hikichi, Y., Mori, Y., Ishikawa, S., Hayashi, K., Ohnishi, K., Kiba, A. and Kai, K. 2017. Regulation involved in colonization of intercellular spaces of host plants in Ralstonia solanacearum. Front. Plant Sci. 8:967.
  28. Hikichi, Y., Yoshimochi, T., Tsujimoto, S., Shinohara, R., Nakaho, K., Kanda, A., Kiba, A. and Ohnishi, K. 2007. Global regulation of pathogenicity mechanism of Ralstonia solanacearum. Plant Biotechnol. 24:149-154. https://doi.org/10.5511/plantbiotechnology.24.149
  29. Huang, J. and Schell, M. 1995. Molecular characterization of the eps gene cluster of Pseudomonas solanacearum and its transcriptional regulation at a single promoter. Mol. Microbiol. 16:977-989. https://doi.org/10.1111/j.1365-2958.1995.tb02323.x
  30. Jacobs, J. M., Babujee, L., Meng, F., Milling, A. and Allen, C. 2012. The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato. MBio 3:e00114-12.
  31. Jeong, Y., Kim, J., Kang, Y., Lee, S. and Hwang, I. 2007. Genetic diversity and distribution of Korean isolates of Ralstonia solanacearum. Plant Dis. 91:1277-1287. https://doi.org/10.1094/PDIS-91-10-1277
  32. Jung, E. J., Joo, H. J., Choi, S. Y., Lee, S. Y., Jung, Y. H., Lee, M. H., Kong, H. G. and Lee, S.-W. 2014. Resistance evaluation of tomato germplasm against bacterial wilt by Ralstonia solanacearum. Res. Plant Dis. 20:253-258 (in Korean). https://doi.org/10.5423/RPD.2014.20.4.253
  33. Kai, K., Ohnishi, H., Shimatani, M., Ishikawa, S., Mori, Y., Kiba, A., Ohnishi, K., Tabuchi, M. and Hikichi, Y. 2015. Methyl 3-hydroxymyristate, a diffusible signal mediating phc quorum sensing in Ralstonia solanacearum. ChemBioChem 16:2309-2318. https://doi.org/10.1002/cbic.201500456
  34. Kao, C. C., Barlow, E. and Sequeira, L. 1992. Extracellular polysaccharide is required for wild-type virulence of Pseudomonas solanacearum. J. Bacteriol. 174:1068-1071. https://doi.org/10.1128/jb.174.3.1068-1071.1992
  35. Klee, S. M., Sinn, J. P., Christian, E., Holmes, A. C., Zhao, K., Lehman, B. L., Peter, K. A., Rosa, C. and McNellis, T. W. 2020. Virulence genetics of an Erwinia amylovora putative polysaccharide transporter family member. J. Bacteriol. 202:e00390-20.
  36. Koller, F. and Lassak, J. 2021. Two RmlC homologs catalyze dTDP-4-keto-6-deoxy-D-glucose epimerization in Pseudomonas putida KT2440. Sci. Rep. 11:11991.
  37. Kumar, A. S. and Mody, K. 2009. Microbial exopolysaccharides: variety and potential applications. In: Microbial production of biopolymers and polymer precursors: applications and perspectives, ed. by B. H. A. Rehm, pp. 229-254. Academic Press, Norfolk, UK.
  38. Kwak, M.-J., Kong, H. G., Choi, K., Kwon, S.-K., Song, J. Y., Lee, J., Lee, P. A., Choi, S. Y., Seo, M., Lee, H. J., Jung, E. J., Park, H., Roy, N., Kim, H., Lee, M. M., Rubin, E. M., Lee, S.-W. and Kim, J. F. 2018. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 36:1100-1109. https://doi.org/10.1038/nbt.4232
  39. Lee, H. J., Jo, E. J., Kim, N. H., Chae, Y. and Lee, S.-W. 2011. Disease responses of tomato pure lines against Ralstonia solanacearum strains from Korea and susceptibility at high temperature. Res. Plant Dis. 17:326-333 (in Korean). https://doi.org/10.5423/RPD.2011.17.3.326
  40. Li, C.-T., Liao, C.-T., Du, S.-C., Hsiao, Y.-P., Lo, H.-H. and Hsiao, Y.-M. 2014. Functional characterization and transcriptional analysis of galE gene encoding a UDP-galactose 4-epimerase in Xanthomonas campestris pv. campestris. Microbiol. Res. 169:441-452. https://doi.org/10.1016/j.micres.2013.08.005
  41. Lin, W. S., Cunneen, T. and Lee, C. Y. 1994. Sequence analysis and molecular characterization of genes required for the biosynthesis of type 1 capsular polysaccharide in Staphylococcus aureus. J. Bacteriol. 176:7005-7016. https://doi.org/10.1128/jb.176.22.7005-7016.1994
  42. Liu, H., Zhang, S., Schell, M. A. and Denny, T. P. 2005. Pyramiding unmarked deletions in Ralstonia solanacearum shows that secreted proteins in addition to plant cell-wall-degrading enzymes contribute to virulence. Mol. Plant-Microbe Interact. 18:1296-1305. https://doi.org/10.1094/MPMI-18-1296
  43. Mazur, A., Krol, J. E., Wielbo, J., Urbanik-Sypniewska, T. and Skorupska, A. 2002. Rhizobium leguminosarum bv. trifolii PssP protein is required for exopolysaccharide biosynthesis and polymerization. Mol. Plant-Microbe Interact. 15:388-397. https://doi.org/10.1094/MPMI.2002.15.4.388
  44. Mijakovic, I., Poncet, S., Boel, G., Maze, A., Gillet, S., Jamet, E., Decottignies, P., Grangeasse, C., Doublet, P., Le Marechal, P. and Deutscher, J. 2003. Transmembrane modulator-dependent bacterial tyrosine kinase activates UDP-glucose dehydrogenases. EMBO J. 22:4709-4718. https://doi.org/10.1093/emboj/cdg458
  45. Murugaiyan, S., Bae, J. Y., Wu, J., Lee, S. D., Um, H. Y., Choi, H. K., Chung, E., Lee, J.-H. and Lee, S.-W. 2011. Characterization of filamentous bacteriophage PE226 infecting Ralstonia solanacearum strains. J. Appl. Microbiol. 110:296-303. https://doi.org/10.1111/j.1365-2672.2010.04882.x
  46. Orgambide, G., Montrozier, H., Servin, P., Roussel, J., Trigalet-Demery, D. and Trigalet, A. 1991. High heterogeneity of the exopolysaccharides of Pseudomonas solanacearum strain GMI 1000 and the complete structure of the major polysaccharide. J. Biol. Chem. 266:8312-8321. https://doi.org/10.1016/S0021-9258(18)92977-7
  47. O'Toole, G. A. and Kolter, R. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 28:449-461. https://doi.org/10.1046/j.1365-2958.1998.00797.x
  48. Peyraud, R., Denny, T. P. and Genin, S. 2017. Exopolysaccharide quantification for the plant pathogen Ralstonia solanacearum. Bio Protoc. 7:e2289.
  49. Planas-Marques, M., Kressin, J. P., Kashyap, A., Panthee, D. R., Louws, F. J., Coll, N. S. and Valls, M. 2019. Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato. J. Exp. Bot. 71:2157-2171. https://doi.org/10.1093/jxb/erz562
  50. Reeves, P. R., Hobbs, M., Valvano, M. A., Skurnik, M., Whitfield, C., Coplin, D., Kido, N., Klena, J., Maskell, D., Raetz, C. R. and Rick, P. D. 1996. Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol. 4:495-503. https://doi.org/10.1016/S0966-842X(97)82912-5
  51. Saile, E., McGarvey, J. A., Schell, M. A. and Denny, T. P. 1997. Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by Ralstonia solanacearum. Phytopathology 87:1264-1271. https://doi.org/10.1094/PHYTO.1997.87.12.1264
  52. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Habor Laboratory Press, Cold Spring Habor, NY, USA. 1546 pp.
  53. Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory guide for the identification of plant pathogenic bacteria. APS Press, St. Paul, MN, USA. 373 pp.
  54. Schell, M. A. 2000. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu. Rev. Phytopathol. 38:263-292. https://doi.org/10.1146/annurev.phyto.38.1.263
  55. Soldo, B., Scotti, C., Karamata, D. and Lazarevic, V. 2003. The Bacillus subtilis Gne (GneA, GalE) protein can catalyse UDP-glucose as well as UDP-N-acetylglucosamine 4-epimerisation. Gene 319:65-69. https://doi.org/10.1016/S0378-1119(03)00793-5
  56. Tans-Kersten, J., Huang, H. and Allen, C. 2001. Ralstonia solanacearum needs motility for invasive virulence on tomato. J. Bacteriol. 183:3597-3605. https://doi.org/10.1128/JB.183.12.3597-3605.2001
  57. Thoquet, P., Olivier, J., Sperisen, C., Rogowsky, P., Laterrot, H. and Grimsley, N. 1996. Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii7996. Mol. Plant-Microbe Interact. 9:826-836. https://doi.org/10.1094/MPMI-9-0826
  58. Vogel, U., Beerens, K. and Desmet, T. 2022. Nucleotide sugar dehydratases: structure, mechanism, substrate specificity, and application potential. J. Biol. Chem. 298:101809.
  59. Wallis, F. M. and Truter, S. J. 1978. Histopathology of tomato plants infected with Pseudomonas solanacearum, with emphasis on ultrastructure. Physiol. Plant Pathol. 13:307-310. https://doi.org/10.1016/0048-4059(78)90047-4
  60. Wang, L., Gao, Y., Jiang, N., Yan, J., Lin, W. and Cai, K. 2022. Silicon controls bacterial wilt disease in tomato plants and inhibits the virulence-related gene expression of Ralstonia solanacearum. Int. J. Mol. Sci. 23:6965.
  61. Wicker, E., Grassart, L., Coranson-Beaudu, R., Mian, D., Guilbaud, C., Fegan, M. and Prior, P. 2007. Ralstonia solanacearum strains from Martinique (french west indies) exhibiting a new pathogenic potential. Appl. Environ. Microbiol. 73:6790-6801. https://doi.org/10.1128/AEM.00841-07
  62. Wu, J., Kong, H. G., Jung, E. J., Choi, S. Y., Lee, H. J., Tao, W., Chung, E. and Lee, S.-W. 2015. Loss of glutamate dehydrogenase in Ralstonia solanacearum alters dehydrogenase activity, extracellular polysaccharide production and bacterial virulence. Physiol. Mol. Plant Pathol. 90:57-64. https://doi.org/10.1016/j.pmpp.2015.03.003
  63. Yao, J. and Allen, C. 2007. The plant pathogen Ralstonia solanacearum needs aerotaxis for normal biofilm formation and interactions with its tomato host. J. Bacteriol. 189:6415-6424. https://doi.org/10.1128/JB.00398-07