DOI QR코드

DOI QR Code

Molecular Marker Development for the Rapid Differentiation of Black Rot Causing Xanthomonas campestris pv. campestris Race 7

  • Yeo-Hyeon Kim (Department of Horticulture, Sunchon National University) ;
  • Sopheap Mao (Department of Horticulture, Sunchon National University) ;
  • Nihar Sahu (Department of Horticulture, Sunchon National University) ;
  • Uzzal Somaddar (Department of Horticulture, Sunchon National University) ;
  • Hoy-Taek Kim (Department of Horticulture, Sunchon National University) ;
  • Masao Watanabe (Graduate School of Life Science, Tohoku University) ;
  • Jong-In Park (Department of Horticulture, Sunchon National University)
  • 투고 : 2023.07.20
  • 심사 : 2023.09.12
  • 발행 : 2023.10.01

초록

Xanthomonas campestris pv. campestris (Xcc) is a plant pathogen of Brassica crops that causes black rot disease throughout the world. At present, 11 physiological races of Xcc (races 1-11) have been reported. The conventional method of using differential cultivars for Xcc race detection is not accurate and it is laborious and time-consuming. Therefore, the development of specific molecular markers has been used as a substitute tool because it offers an accurate and reliable result, particularly a quick diagnosis of Xcc races. Previously, our laboratory has successfully developed race-specific molecular markers for Xcc races 1-6. In this study, specific molecular markers to identify Xcc race 7 have been developed. In the course of study, whole genome sequences of several Xcc races, X. campestris pv. incanae, X. campestris pv. raphani, and X. campestris pv. vesicatoria were aligned to identify variable regions like sequence-characterized amplified regions and insertions and deletions specific to race 7. Primer pairs were designed targeting these regions and validated against 22 samples. The polymerase chain reaction analysis revealed that three primer pairs specifically amplified the DNA fragment corresponding to race 7. The obtained finding clearly demonstrates the efficiency of the newly developed markers in accurately detecting Xcc race 7 among the other races. These results indicated that the newly developed marker can successfully and rapidly detect Xcc race 7 from other races. This study represents the first report on the successful development of specific molecular markers for Xcc race 7.

키워드

과제정보

This work was supported by grants from Ministry of Agriculture, Food and Rural Affairs (MAFRA) (322059-03-2-HD050). We would thank Dr. Pilar Soengas, Department of Plant Genetics, Spain for providing Xcc race 8. We also thank Dr. Joana G. Vicente, University of Warwick, UK for providing Xcc races (races 1-7) and Xc pathovars. We thank the Korean Agriculture Culture Collection (KACC), Korea for providing Xcc species and ICMP collection, New Zealand for providing isolates of plant pathogenic bacteria.

참고문헌

  1. Afrin, K. S., Rahim, M. A., Jung, H.-J., Park, J.-I., Kim, H.-T. and Nou, I.-S. 2019. Development of molecular marker through genome realignment for specific detection of Xanthomonas campestris pv. campestris race 5, a pathogen of black rot disease. J. Microbiol. Biotechnol. 29:785-793. https://doi.org/10.4014/jmb.1901.01050
  2. Afrin, K. S., Rahim, M. A., Rubel, M. H., Natarajan, S., Song, J.-Y., Kim, H.-T., Park, J.-I. and Nou, I.-S. 2018. Development of race-specific molecular marker for Xanthomonas campestris pv. campestris race 3, the causal agent of black rot of crucifers. Can. J. Plant Sci. 98:1119-1125. https://doi.org/10.1139/cjps-2018-0035
  3. Afrin, K. S., Rahim, M. A., Rubel, M. H., Park, J.-I., Jung, H.-J., Kim, H.-T. and Nou, I.-S. 2020. Development of PCR-based molecular marker for detection of Xanthomonas campestris pv. campestris Race 6, the causative agent of black rot of Brassicas. Plant Pathol. J. 36:418-427. https://doi.org/10.5423/PPJ.OA.06.2020.0103
  4. Aritua, V., Nanyonjo, A., Kumakech, F. and Tushemereirwe, W. 2007. Rep-PCR reveals a high genetic homogeneity among Ugandan isolates of Xanthomonas campestris pv. musacearum. Afr. J. Biotechnol. 6:179-183.
  5. Berg, T., Tesoriero, L. and Hailstones, D. L. 2006. A multiplex real-time PCR assay for detection of Xanthomonas campestris from brassicas. Lett. Appl. Microbiol. 42:624-630. https://doi.org/10.1111/j.1472-765X.2006.01887.x
  6. Chidamba, L. and Bezuidenhout, C. C. 2012. Characterisation of Xanthomonas campestris pv. campestris isolates from South Africa using genomic DNA fingerprinting and pathogenicity tests. Eur. J. Plant Pathol. 133:811-818. https://doi.org/10.1007/s10658-012-0002-9
  7. Cho, M. S., Kang, M. J., Kim, C. K., Seol, Y.-J., Hahn, J. H., Park, S. C., Hwang, D. J., Ahn, T.-Y., Park, D. H., Lim, C. K. and Park, D. S. 2011. Sensitive and specific detection of Xanthomonas oryzae pv. oryzae by real-time bio-PCR using pathovar-specific primers based on an rhs family gene. Plant Dis. 95:589-594.
  8. Cook, A. A., Walker, J. C. and Larson, R. H. 1952. Studies on the disease cycle of black rot of crucifers. Phytopathology 42:162-167.
  9. Cruz, J., Tenreiro, R. and Cruz, L. 2017. Assessment of diversity of Xanthomonas campestris pathovars affecting cruciferous plants in Portugal and disclosure of two novel X. campestris pv. campestris races. J. Plant Pathol. 99:403-414.
  10. Eichmeier, A., Penazova, E., Pokluda, R. and Vicente, J. G. 2019. Detection of Xanthomonas campestris pv. campestris through a real-time PCR assay targeting the Zur gene and comparison with detection targeting the hrpF gene. Eur. J. Plant Pathol. 155:891-902. https://doi.org/10.1007/s10658-019-01820-0
  11. Fargier, E. and Manceau, C. 2007. Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathol. 56:805-818. https://doi.org/10.1111/j.1365-3059.2007.01648.x
  12. Food and Agriculture Organization of the United Nations. 2021. The FAO Statistical Database-Agriculture. http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/E [9 January 2021].
  13. Friedt, W., Tu, J. and Fu, T. 2018. Academic and economic importance of Brassica napus rapeseed. In: The Brassica napus genome, eds. by S. Liu, R. Snowdon and B. Chalhoub, pp. 1-20. Springer, Cham, Switzerland.
  14. Ignatov, A., Kuginuki, Y. and Hida, K. 1998. Race-specific reaction of resistance to black rot in Brassica oleracea. Eur. J. Plant Pathol. 104:821-827. https://doi.org/10.1023/A:1008642829156
  15. Jensen, B. D., Vicente, J. G., Manandhar, H. K. and Roberts, S. J. 2010. Occurrence and diversity of Xanthomonas campestris pv. campestris in vegetable Brassica fields in Nepal. Plant Dis. 94:298-305. https://doi.org/10.1094/PDIS-94-3-0298
  16. Kamoun, S., Kamdar, H. V., Tola, E. and Kado, C. I . 1992. Incompatible interactions between crucifers and Xanthomonas campestris involve a vascular hypersensitive response: role of the hrpK locus. Mol. Plant-Microbe Interact. 5:22-33. https://doi.org/10.1094/MPMI-5-022
  17. Kim, B. S. 1986. Testing for detection of Xanthomonas campestris pv. campestris in crucifer seeds and seed disinfection. Korean J. Plant Pathol. 2:96-101.
  18. King, E. O., Ward, M. K. and Raney, D. E. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44:301-307.
  19. Lee, J., Izzah, N. K., Jayakodi, M., Perumal, S., Joh, H. J., Lee, H. J., Lee, S.-C., Park, J. Y., Yang, K.-W., Nou, I.-S., Seo, J., Yoo, J., Suh, Y., Ahn, K., Lee, J. H., Choi, G. J., Yu, Y., Kim, H. and Yang, T.-J. 2015. Genome-wide SNP identification and QTL mapping for black rot resistance in cabbage. BMC Plant Biol. 15:32.
  20. Lema, M., Cartea, M. E., Sotelo, T., Velasco, P. and Soengas, P. 2012. Discrimination of Xanthomonas campestris pv. campestris races among strains from northwestern Spain by Brassica spp. genotypes and rep-PCR. Eur. J. Plant Pathol. 133:159-169. https://doi.org/10.1007/s10658-011-9929-5
  21. Louws, F. J., Fulbright, D. W., Stephens, C. T. and de Bruijn, F. J. 1995. Differentiation of genomic structure by rep-PCR fingerprinting to rapidly classify Xanthomonas campestris pv. vesicatoria. Phytopathology 85:528-536. https://doi.org/10.1094/Phyto-85-528
  22. Martin, R. R., James, D. and Levesque, C. A., 2000. Impacts of molecular diagnostic technologies on plant disease management. Annu. Rev. Phytopathol. 38:207-239. https://doi.org/10.1146/annurev.phyto.38.1.207
  23. Park, H. G. 2006. Genetical improvement of Brassica in Korea. Acta Hortic. 706:31-48. https://doi.org/10.17660/ActaHortic.2006.706.1
  24. Pasquali, M., Dematheis, F., Gullino, M. L. and Garibaldi, A. 2007. Identification of race 1 of Fusarium oxysporum f. sp. lactucae on lettuce by inter-retrotransposon sequence-characterized amplified region technique. Phytopathology 97:987-996. https://doi.org/10.1094/PHYTO-97-8-0987
  25. Popovic, T., Josic, D., Starovic, M., Milovanovic, P., Dolovac, N., Postic, D. and Stankovic, S. 2013. Phenotypic and genotypic characterization of Xanthomonas campestris strains isolated from cabbage, kale and broccoli. Arch. Biol. Sci. 65:585-593. https://doi.org/10.2298/ABS1302585P
  26. Rubel, M. H., Natarajan, S., Hossain, M. R., Nath, U. K., Afrin, K. S., Lee, J.-H., Jung, H.-J., Kim, H.-T., Park, J.-I. and Nou, I.-S. 2019a. Pathovar specific molecular detection of Xanthomonas campestris pv. campestris, the causal agent of black rot disease in cabbage. Can. J. Plant Pathol. 41:318-328. https://doi.org/10.1080/07060661.2019.1570973
  27. Rubel, M. H., Natarajan, S., Nath, U. K., Denison, M. I. J., Jung, H.-J., Kim, H.-T., Park, J.-I. and Nou, I.-S. 2019b. Development of a marker for detection of Xanthomonas campestris pv. campestris races 1 and 2 in Brassica oleracea. Hortic. Environ. Biotechnol. 60:511-517. https://doi.org/10.1007/s13580-019-00143-7
  28. Rubel, M. H., Robin, A. H. K., Natarajan, S., Vicente, J. G., Kim, H.-T., Park, J.-I. and Nou, I.-S. 2017. Whole-genome realignment facilitates development of specific molecular markers for races 1 and 4 of Xanthomonas campestris pv. campestris, the cause of black rot disease in Brassica oleracea. Int. J. Mol. Sci. 18:2523.
  29. Singh, D., Raghavendra, B. T., Rathaur, P. S., Singh, H., Raghuwanshi, R. and Singh, R. P. 2014. Detection of black rot disease causing pathogen Xanthomonas campestris pv. campestris by bio-PCR from seeds and plant parts of cole crops. Seed Sci. Technol. 42:36-46.
  30. Song, E.-S., Kim, S.-Y., Noh, T.-H., Cho, H., Chae, S.-C. and Lee, B.-M. 2014. PCR-based assay for rapid and specific detection of the new Xanthomonas oryzae pv. oryzae K3a race using an AFLP-derived marker. J. Microbiol. Biotechnol. 24:732-739. https://doi.org/10.4014/jmb.1311.11005
  31. Taylor, J. D., Conway, J., Roberts, S. J., Astley, D. and Vicente, J. G. 2002. Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology 92:105-111. https://doi.org/10.1094/PHYTO.2002.92.1.105
  32. Thangavelu, R., Edwinraj, E., Gopi, M., Pushpakanth, P., Sharmila, K., Prabaharan, M., Loganathan, M. and Uma, S. 2022. Development of PCR-based race-specific markers for differentiation of Indian Fusarium oxysporum f. sp. cubense, the causal agent of fusarium wilt in banana. J. Fungi 8:53.
  33. Vera Cruz, C. M., Ardales, E. y., Skinner, D. Z., Talag, J., Nelson, R. J., Louws, F. J., Leung, H., Mew, T. W. and Leach, J. E. 1996. Measurement of haplotypic variation in Xanthomonas oryzae pv. oryzae within a single field by rep-PCR and RFLP analyses. Pathology 86:1352-1359.
  34. Vicente, J. G., Conway, J., Roberts, S. J. and Taylor, J. D. 2001. Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology 91:492-499. https://doi.org/10.1094/PHYTO.2001.91.5.492
  35. Vicente, J. G. and Holub, E. B. 2013. Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol. Plant Pathol. 14:2-18.
  36. Williams, P. H. 1980. Black rot: a continuing threat to world crucifers. Plant Dis. 64:736-742. https://doi.org/10.1094/PD-64-736
  37. Wang, B., Hu, X., Li, Q., Hao, B., Zhang, B., Li, G. and Kang, Z. 2010. Development of race-specific SCAR markers for detection of Chinese races CYR32 and CYR33 of Puccinia striiformis f. sp. tritici. Plant Dis. 94:221-228. https://doi.org/10.1094/PDIS-94-2-0221
  38. Yerasu, S. R., Murugan, L., Halder, J., Prasanna, H. C., Singh, A. and Singh, B. 2019. Screening tomato genotypes for resistance to early blight and American serpentine leafminer. Hortic. Environ. Biotechnol. 60:427-433. https://doi.org/10.1007/s13580-019-00130-y
  39. Zaccardelli, M., Campanile, F., Spasiano, A. and Merighi, M. 2007. Detection and identification of the crucifer pathogen, Xanthomonas campestris pv. campestris, by PCR amplification of the conserved Hrp/type III secretion system gene hrcC. Eur. J. Plant Pathol. 118:299-306. https://doi.org/10.1007/s10658-007-9115-y