DOI QR코드

DOI QR Code

Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato

  • Rattana Pengproh (Department of Biology, Faculty of Science, Mahasarakham University) ;
  • Thanwanit Thanyasiriwat (Plant Genome and Disease Research Unit, Department of Agriculture and Resources, Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus) ;
  • Kusavadee Sangdee (Preclinical Group, Faculty of Medicine, Mahasarakham University) ;
  • Juthaporn Saengprajak (Department of Biology, Faculty of Science, Mahasarakham University) ;
  • Praphat Kawicha (Plant Genome and Disease Research Unit, Department of Agriculture and Resources, Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus) ;
  • Aphidech Sangdee (Department of Biology, Faculty of Science, Mahasarakham University)
  • Received : 2023.01.29
  • Accepted : 2023.08.26
  • Published : 2023.10.01

Abstract

Recently, strategies for controlling Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of Fusarium wilt of tomato, focus on using effective biocontrol agents. In this study, an analysis of the biocontrol and plant growth promoting (PGP) attributes of 11 isolates of loamy soil Bacillus spp. has been conducted. Among them, the isolates B.PNR1 and B.PNR2 inhibited the mycelial growth of Fol by inducing abnormal fungal cell wall structures and cell wall collapse. Moreover, broad-spectrum activity against four other plant pathogenic fungi, F. oxysporum f. sp. cubense race 1 (Foc), Sclerotium rolfsii, Colletotrichum musae, and C. gloeosporioides were noted for these isolates. These two Bacillus isolates produced indole acetic acid, phosphate solubilization enzymes, and amylolytic and cellulolytic enzymes. In the pot experiment, the culture filtrate from B.PNR1 showed greater inhibition of the fungal pathogens and significantly promoted the growth of tomato plants more than those of the other treatments. Isolate B.PNR1, the best biocontrol and PGP, was identified as Bacillus stercoris by its 16S rRNA gene sequence and whole genome sequencing analysis (WGS). The WGS, through genome mining, confirmed that the B.PNR1 genome contained genes/gene cluster of a nonribosomal peptide synthetase/polyketide synthase, such as fengycin, surfactin, bacillaene, subtilosin A, bacilysin, and bacillibactin, which are involved in antagonistic and PGP activities. Therefore, our finding demonstrates the effectiveness of B. stercoris strain B.PNR1 as an antagonist and for plant growth promotion, highlighting the use of this microorganism as a biocontrol agent against the Fusarium wilt pathogen and PGP abilities in tomatoes.

Keywords

Acknowledgement

This research project was financially supported by Mahasarakham University. The authors acknowledge the Faculty of Science, Mahasarakham University, and the Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, for facilitating this project. Rattana Pengproh acknowledges the Ministry of Higher Education, Science, Research, and Innovation for the Ph.D. scholarship.

References

  1. Abdallah, B. D., Tounsi, S., Gharsallah, H., Hammami, A. and Frikha-Gargouri, O. 2018. Lipopeptides from Bacillus amyloliquefaciens strain 32a as promising biocontrol compounds against the plant pathogen Agrobacterium tumefaciens. Environ. Sci. Pollut. Res. Int. 25:36518-36529. https://doi.org/10.1007/s11356-018-3570-1
  2. Ajilogba, C. F. and Babalola, O. O. 2013. Integrated management strategies for tomato Fusarium wilt. Biocontrol Sci. 18:117-127. https://doi.org/10.4265/bio.18.117
  3. Albayrak, C. B. 2019. Bacillus species as biocontrol agents for fungal plant pathogens. In: Bacilli in climate resilient agriculture and bioprospecting. Bacilli and agrobiotechnology: phytostimulation and biocontrol, eds. by M. T. Islam, M. M. Rahman, P. Pandey, M. H. Boehme and G. Haesaert, pp. 239-265. Springer, Cham, Switzerland.
  4. Ali, M. A., Ren, H., Ahmed, T., Luo, J., An, Q., Qi, X. and Li, B. 2020. Antifungal effects of rhizospheric Bacillus species against bayberry twig blight pathogen Pestalotiopsis versicolor. Agronomy 10:1811.
  5. Aloo, B. N., Makumba, B. A. and Mbega, E. R. 2019. The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol. Res. 219:26-39. https://doi.org/10.1016/j.micres.2018.10.011
  6. Amini, J. and Sidovich, D. F. 2010. The effects of fungicides on Fusarium oxysporum f. sp. lycopersici associated with Fusarium wilt of tomato. J. Plant Prot. Res. 50:172-178.
  7. Andric, S., Meyer, T. and Ongena, M. 2020. Bacillus responses to plant-associated fungal and bacterial communities. Front. Microbiol. 11:1350.
  8. Babalola, O. O. and Glick, B. R. 2012. Indigenous African agriculture and plant associated microbes: current practice and future transgenic prospects. Sci. Res. Essays 7:2431-2439.
  9. Bais, H. P., Fall, R. and Vivanco, J. M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134:307-319. https://doi.org/10.1104/pp.103.028712
  10. Balderas-Ruiz, K. A., Gomez-Guerrero, C. I., Trujillo-Roldan, M. A., Valdez-Cruz, N. A., Aranda-Ocampo, S., Juarez, A. M., Leyva, E., Galindo, E. and Serrano-Carreon, L. 2021. Bacillus velezensis 83 increases productivity and quality of tomato (Solanum lycopersicum L.): pre and postharvest assessment. Curr. Res. Microb. Sci. 2:100076.
  11. Bauer, J. S., Hauck, N., Christof, L., Mehnaz, S., Gust, B. and Gross, H. 2016. The systematic investigation of the quorum sensing system of the biocontrol strain Pseudomonas chlororaphis subsp. aurantiaca PB-St2 unveils aurI to be a biosynthetic origin for 3-oxo-homoserine lactones. PLoS ONE 11:e0167002.
  12. Boottanun, P., Potisap, C., Hurdle, J. G. and Sermswan, R. W. 2017. Secondary metabolites from Bacillus amyloliquefaciens isolated from soil can kill Burkholderia pseudomallei. AMB Express 7:16.
  13. Castaldi, S., Petrillo, C., Donadio, G., Piaz, F. D., Cimmino, A., Masi, M., Evidente, A. and Isticato, R. 2021. Plant growth promotion function of Bacillus sp. strains isolated from saltpan rhizosphere and their biocontrol potential against Macrophomina phaseolina. Int. J. Mol. Sci. 22:3324.
  14. Chen, A., Sun, J., Matthews, A., Armas-Egas, L., Chen, N., Hamill, S., Mintoff, S., Tran-Nguyen, L. T. T., Batley, J. and Aitken, E. A. B. 2019. Assessing variations in host resistance to Fusarium oxysporum f. sp. cubense race 4 in Musa species, with a focus on the subtropical race 4. Front. Microbiol. 10:1062.
  15. Chen, L., Heng, J., Qin, S. and Bian, K. 2018. A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. PLoS ONE 13:e0198560.
  16. Choub, V., Ajuna, H. B., Won, S.-J., Moon, J.-H., Choi, S.-I., Maung, C. E. H., Kim, C.-W. and Ahn, Y. S. 2021. Antifungal activity of Bacillus velezensis CE 100 against anthracnose disease (Colletotrichum gloeosporioides) and growth promotion of walnut (Juglans regia L.) trees. Int. J. Mol. Sci. 22:10438.
  17. Choubane, S., Cheba, B. A. and Benourrad, A. 2016. Screening and phenotypic diversity of amylase producing Rhizospheric bacteria from some North African Plants. Proced. Technol. 22:1197-1204. https://doi.org/10.1016/j.protcy.2016.01.168
  18. Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D. R., da Costa, M. S., Rooney, A. P., Yi, H., Xu, X-W., De Meyer, S. and Trujillo, M. E. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68:461-466. https://doi.org/10.1099/ijsem.0.002516
  19. Deketelaere, S., Tyvaert, L., Franca, S. C. and Hofte, M. 2017. Desirable traits of a good biocontrol agent against verticillium wilt. Front Microbiol. 8:1186.
  20. Deleu, M., Paquot, M. and Nylander, T. 2008. Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model bio-membranes. Biophys J. 94:2667-2679. https://doi.org/10.1529/biophysj.107.114090
  21. Dertz, E. A., Xu, J., Stintzi, A. and Raymond, K.N. 2006. Bacillibactin-mediated iron transport in Bacillus subtilis. J. Am. Chem. Soc. 128:22-23. https://doi.org/10.1021/ja055898c
  22. Devi, N. O., Tombisana Devi, R. K., Debbarma, M., Hajong, M. and Thokchom, S. 2022. Effect of endophytic Bacillus and arbuscular mycorrhiza fungi (AMF) against Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. Egypt. J. Biol. Pest Control 32:1.
  23. Dimopoulou, A., Theologidis, I., Benaki, D., Koukounia, M., Zervakou, A., Tzima, A., Diallinas, G., Hatzinikolaou, D. G. and Skandalis, N. 2021. Direct antibiotic activity of Bacillibactin broadens the biocontrol range of Bacillus amyloliquefaciens MBI600. mSphere 6:e0037621.
  24. Domagalski, M. J., Tkaczuk, K. L., Chruszcz, M., Skarina, T., Onopriyenko, O., Cymborowski, M., Grabowski, M., Savchenko, A. and Minora, W. 2013. Structure of isochorismate synthase DhbC from Bacillus anthracis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 69:956-961. https://doi.org/10.1107/S1744309113021246
  25. Du, N., Guo, H., Fu, R., Dong, X., Xue, D. and Piao, F. 2022. Comparative transcriptome analysis and genetic methods revealed the biocontrol mechanism of Paenibacillus polymyxa NSY50 against tomato Fusarium wilt. Int. J. Mol. Sci. 23:10907.
  26. Elanchezhiyan, K., Keerthana, U., Nagendran, K., Prabhukarthikeyan, S. R., Prabakar, K., Raguchander, T. and Karthikeyan, G. 2018. Multifaceted benefits of Bacillus amyloliquefaciens strain FBZ24 in the management of wilt disease in tomato caused by Fusarium oxysporum f. sp. lycopersici. Physiol. Mol. Plant Pathol. 103:92-101. https://doi.org/10.1016/j.pmpp.2018.05.008
  27. El-Tarabily, K. A., Nassar, A. H., Hardy, G. S. J. and Sivasithamparam, K. 2009. Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J. Appl. Microbiol. 106:13-26. https://doi.org/10.1111/j.1365-2672.2008.03926.x
  28. Erega, A., Stefanic, P., Dogsa, I., Danevcic, T., Simunovic, K., Klancnik, A., Mozina, S. S. and Mandic Mulec, I. 2021. Bacillaene mediates the inhibitory effect of Bacillus subtilis on Campylobacter jejuni biofilms. Appl. Environ. Microbiol. 87:e0295520.
  29. Fan, B., Blom, J., Klenk, H.-P. and Borriss, R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an "Operational Group B. amyloliquefaciens" within the B. subtilis species complex. Front. Microbiol. 8:22.
  30. Fatima, S. and Anjum, T. 2017. Identification of a potential ISR determinant from Pseudomonas aeruginosa PM12 against Fusarium wilt in tomato. Front. Plant Sci. 8:848.
  31. Garcia-Gutierrez, L., Zeriouh, H., Romero, D., Cubero, J., de Vicente, A. and Perez-Garcia, A. 2013. The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses. Microb. Biotechnol. 6:264-274. https://doi.org/10.1111/1751-7915.12028
  32. Ghasemi, S., Safaie, N., Shahbazi, S., Shams-Bakhsh, M. and Askari, H. 2020. The role of cell wall degrading enzymes in antagonistic traits of Trichoderma virens against Rhizoctonia solani. Iran J. Biotechnol. 18:e2333.
  33. Glickmann, E. and Dessaux, Y. 1995. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61:793-796. https://doi.org/10.1128/aem.61.2.793-796.1995
  34. Haddoudi, I., Cabrefiga, J., Mora, I., Mhadhbi, H., Montesinos, E. and Mrabet, M. 2021. Biological control of Fusarium wilt caused by Fusarium equiseti in Vicia faba with broad spectrum antifungal plant-associated Bacillus spp. Biol. Control 160:104671.
  35. Hamdali, H., Hafidi, M., Virolle, M. J. and Ouhdouch, Y. 2008. Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-deficient soil under greenhouse conditions. Appl. Soil Ecol. 40:510-517. https://doi.org/10.1016/j.apsoil.2008.08.001
  36. Hashem, A., Tabassum, B. and Abd Allah, E. F. 2019. Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 26:1291-1297. https://doi.org/10.1016/j.sjbs.2019.05.004
  37. Huang, Q., Liu, H., Zhang, J., Wang, S., Liu, F., Chengdie, L. and Wang, G. 2022. Production of extracellular amylase contributes to the colonization of Bacillus cereus 0-9 in wheat roots. BMC Microbiol. 22:205.
  38. Kang, S.-M., Radhakrishnan, R., Lee, K.-E., You, Y.-H., Ko, J.-H., Kim, J.-H. and Lee, I.-J. 2015. Mechanism of plant growth promotion elicited by Bacillus sp. LKE15 in oriental melon. Acta Agric. Scand. B. Soil Plant Sci. 65:637-647.
  39. Kanini, G. S., Katsifas, E. A., Savvides, A. L. and Karagouni, A. D. 2013. Streptomyces rochei ACTA1551, an indigenous Greek isolate studied as a potential biocontrol agent against Fusarium oxysporum f. sp. lycopersici. Biomed. Res. Int. 2013:387230.
  40. Kawicha, P., Nitayaros, J., Saman, P., Thaporn, S., Thanyasiriwat, T., Somtrakoon, K., Sangdee, K. and Sangdee, A. 2023a. Evaluation of soil Streptomyces spp. for the biological control of Fusarium wilt disease and growth promotion in tomato and banana. Plant Pathol. J. 39:108-122.
  41. Kawicha, P., Tongyoo, P., Wongpakdee, S., Rattanapolsan, L., Duangjit, J., Chunwongse, J., Suwor, P., Sangdee, A. and Thanyasiriwat, T. 2023b. Genome-wide association study revealed genetic loci for resistance to Fusarium wilt in tomato germplasm. Crop Breed. Appl. Biotechnol. 23:e43532311.
  42. Kgosi, V. T., Tingting, B., Ying, Z. and Liu, H. 2022. Anti-fungal analysis of Bacillus subtilis DL76 on conidiation, appressorium formation, growth, multiple stress response, and pathogenicity in Magnaporthe oryzae. Int. J. Mol. Sci. 23:5314.
  43. Khamna, S., Yokota, A., Peberdy, J. F. and Lumyong, S. 2010. Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. EurAsian J. Biosci. 4:23-32.
  44. Khan, N., Martinez-Hidalgo, P., Ice, T. A., Maymon, M., Humm, E. A., Nejat, N., Sanders, E. R., Kaplan, D. and Hirsch, A. M. 2018. Antifungal activity of Bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. Front. Microbiol. 9:2363.
  45. Kim, T. J., Kim, M. J., Kim, B. C., Kim, J. C., Cheong, T. K., Kim, J. W. and Park, K. H. 1999. Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus strain. Appl. Environ. Microbiol. 65:1644-1651. https://doi.org/10.1128/AEM.65.4.1644-1651.1999
  46. Lastochkina, O., Seifikalhor, M., Aliniaeifard, S., Baymiev, A., Pusenkova, L., Garipova, S., Kulabuhova, D. and Maksimov, I. 2019. Bacillus spp.: efficient biotic strategy to control postharvest diseases of fruits and vegetables. Plants 8:97.
  47. Lefort, V., Desper, R. and Gascuel, O. 2015. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32:2798-2800. https://doi.org/10.1093/molbev/msv150
  48. Li, Z., Guo, B., Wan, K., Cong, M., Huang, H. and Ge, Y. 2015. Effects of bacteria-free filtrate from Bacillus megaterium strain L2 on the mycelium growth and spore germination of Alternaria alternata. Biotechnol. Biotechnol. Equip. 29:1062-1068. https://doi.org/10.1080/13102818.2015.1068135
  49. Lopez-Aranda, J. M., Dominguez, P., Miranda, L., de los Santos, B., Talavera, M., Daugovish, O., Soria, C., Chamorro, M. and Medina, J. J. 2016. Fumigant use for strawberry production in Europe: the current landscape and solutions. Int. J. Fruit Sci. 16:1-15. https://doi.org/10.1080/15538362.2016.1199995
  50. Makuwa, S. C. and Serepa-Dlamini, M. H. 2019. Data on draft genome sequence of Bacillus sp. strain MHSD28, a bacterial endophyte isolated from Dicoma anomala. Data Br. 26:104524.
  51. Marlatt, M. L., Correll, J. C. and Kaufmann, P. 1996. Two genetically distinct populations of Fusarium oxysporum f. sp. lycopersici Race 3 in the United States. Plant Dis. 80:1336-1342. https://doi.org/10.1094/PD-80-1336
  52. McGovern, R. J. 2015. Management of tomato diseases caused by Fusarium oxysporum. Crop Prot. 73:78-92. https://doi.org/10.1016/j.cropro.2015.02.021
  53. Meier-Kolthoff, J. P., Auch, A. F., Klenk, H.-P. and Oker, M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60.
  54. Nalli, Y., Singh, S., Gajjar, A., Mahizhaveni, B., Dusthackeer, V. N. A. and Shinde, P. B. 2023. Bacillibactin class siderophores produced by the endophyte Bacillus subtilis NPROOT3 as antimycobacterial agents. Lett. Appl. Microbiol. 76:ovac026.
  55. Nannan, C., Vu, H. Q., Gillis, A., Caulier, S., Nguyen, T. T. T. and Mahillon, J. 2021. Bacilysin within the Bacillus subtilis group: gene prevalence versus antagonistic activity against Gram-negative foodborne pathogens. J. Biotechnol. 327:28-35. https://doi.org/10.1016/j.jbiotec.2020.12.017
  56. Nishimaki, T. and Sato, K. 2019. An extension of the Kimura two-parameter model to the natural evolutionary process. J. Mol. Evol. 87:60-67. https://doi.org/10.1007/s00239-018-9885-1
  57. Olanrewaju, O. S., Ayilara, M. S., Ayangbenro, A. S. and Babalola, O. O. 2021. Genome mining of three plant growth-promoting Bacillus species from maize rhizosphere. Appl. Biochem. Biotechnol. 193:3949-3969. https://doi.org/10.1007/s12010-021-03660-3
  58. Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115-125. https://doi.org/10.1016/j.tim.2007.12.009
  59. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J.-L. and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9:1084-1090. https://doi.org/10.1111/j.1462-2920.2006.01202.x
  60. Patel, P. S., Huang, S., Fisher, S., Pirnik, D., Aklonis, C., Dean, L., Meyers, E., Fernandes, P. and Mayerl, F. 1995. Bacillaene, a novel inhibitor of procaryotic protein synthesis produced by Bacillus subtilis: production, taxonomy, isolation, physicochemical characterization and biological activity. J. Antibiot. 48:997-1003. https://doi.org/10.7164/antibiotics.48.997
  61. Peuckert, F., Ramos-Vega, A. L., Miethke, M., Schworer, C. J., Albrecht, A.G., Oberthur, M. and Marahiel, M. A. 2011. The siderophore binding protein feuA shows limited promiscuity toward exogenous triscatecholates. Chem. Biol. 18:907-919. https://doi.org/10.1016/j.chembiol.2011.05.006
  62. Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiology 17:362-370.
  63. Raaijmakers, J. M., De Bruijn, I., Nybroe, O. and Ongena, M. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev. 34:1037-1062.
  64. Radhakrishnan, R., Hashem, A. and Abd Allah, E. F. 2017. Bacillus: a biological tool for crop improvement through biomolecular changes in adverse environments. Front. Physiol. 8:667.
  65. Reis, A., Costa, H., Boiteux, L. S. and Lopes, C. A. 2005. First report of Fusarium oxysporum f. sp. lycopersici race 3 on tomato in Brazil. Fitopatol. Bras. 30:426-428. https://doi.org/10.1590/S0100-41582005000400017
  66. Richter, M. and Rossello-Mora, R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. U. S. A. 106:19126-19131. https://doi.org/10.1073/pnas.0906412106
  67. Saman, P., Kawicha, P., Sangdee, A., Wongpakdee, S., Rattanapolsan, L., Ponpang-Nga, P., Suwor, P. and Thanyasiriwat, T. 2022. Grafting compatibility, scion growth, and Fusarium wilt disease incidence of intraspecific grafted tomato. J. Hortic. Res. 30:95-104. https://doi.org/10.2478/johr-2022-0020
  68. Sangdee, A., Kornphachara, S. and Srisawat, N. 2016. In vitro screening of antagonistic activity of soil Streptomyces against plant pathogenic fungi and assessment of its characters. Int. J. Agric. Technol. 12:173-185.
  69. Saxena, A. K., Kumar, M., Chakdar, H., Anuroopa, N. and Bagyaraj, D. J. 2020. Bacillus species in soil as a natural resource for plant health and nutrition. J. Appl. Microbiol. 128:1583-1594. https://doi.org/10.1111/jam.14506
  70. Schwyn, B. and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  71. Sha, Y., Zeng, Q. and Sui, S. 2020. Screening and application of Bacillus strains isolated from nonrhizospheric rice soil for the biocontrol of rice blast. Plant Pathol. J. 36:231-243. https://doi.org/10.5423/PPJ.OA.02.2020.0028
  72. Shafi, J., Tian, H. and Ji, M. 2017. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol. Biotechnol. Equip. 31:446-459. https://doi.org/10.1080/13102818.2017.1286950
  73. Shahid, I., Han, J., Hanooq, S., Malik, K. A., Borchers, C. H. and Mehnaz, S. 2021. Profiling of metabolites of Bacillus spp. and their application in sustainable plant growth promotion and biocontrol. Front. Sustain. Food Syst. 5:605195.
  74. Shelburne, C. E., An, F. Y., Dholpe, V., Ramamoorthy, A., Lopatin, D. E. and Lantz, M. S. 2007. The spectrum of antimicrobial activity of the bacteriocin subtilosin A. J. Antimicrob. Chemother. 59:297-300. https://doi.org/10.1093/jac/dkl495
  75. Singh, N., Pandey, P., Dubey, R. C. and Maheshwari, D. K. 2008. Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World J. Microbiol. Biotechnol. 24:1669-1679. https://doi.org/10.1007/s11274-008-9680-z
  76. Smibert, R. M. and Krieg, N. R. 1994. Phenotypic characterization. In: Methods for general and molecular bacteriology, eds. by P. Gerhardt, R. G. E. Murray, W. A. Wood and N. R. Krieg, pp. 607-654. ASM Press, Washington, DC, USA.
  77. Smith, T. J. and Foster, S. J. 1997. Autolysins during sporulation of Bacillus subtilis 168. FEMS Microbiol. Lett. 157:141-147. https://doi.org/10.1111/j.1574-6968.1997.tb12765.x
  78. Srinivas, C., Nirmala Devi, D., Narasimha Murthy, K., Mohan, C. D., Lakshmeesha, T. R., Singh, B., Kalagatur, N. K., Niranjana, S. R., Hashem, A., Alqarawi, A. A., Tabassum, B., Abd Allah, E. F. and Chandra Nayaka, S. 2019. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: biology to diversity. A review. Saudi J. Biol. Sci. 26:1315-1324. https://doi.org/10.1016/j.sjbs.2019.06.002
  79. Tamura, K., Stecher, G. and Kumar, S. 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38:3022-3027. https://doi.org/10.1093/molbev/msab120
  80. Therien, M., Kiesewalter, H. T., Auria, E., Charron-Lamoureux, V., Wibowo, M., Maroti, G., Kovacs, A. T. and Beauregarda, P. B. 2020. Surfactin production is not essential for pellicle and root-associated biofilm development of Bacillus subtilis. Biofilm 2:100021.
  81. Tkachuk, N., Zelena, L., Lukash, O. and Mazur, P. 2021. Microbiological and genetic characteristics of Bacillus velezensis bacillibactin-producing strains and their effect on the sulfate-reducing bacteria biofilms on the poly(ethylene terephthalate) surface. Ecol. Quest. 32:119-129.
  82. Torguet, L., Zazurca, L., Martinez, G., Pons-Sole, G., Luque, J. and Miarnau, X. 2022. Evaluation of fungicides and application strategies for the management of the red leaf blotch disease of almond. Horticulturae 8:501.
  83. Urzua, L. S., Vazquez-Candanedo, A. P., Sanchez-Espindola, A., Ramirez, C. A. and Baca, B. E. 2013. Identification and characterization of an iron ABC transporter operon in Gluconacetobacter diazotrophicus Pal 5. Arch. Microbiol. 195:431-438. https://doi.org/10.1007/s00203-013-0890-x
  84. Vejan, P., Abdullah, R., Khadiran, T., Ismail, S. and Nasrulhaq Boyce, A. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability: a review. Molecules 21:573.
  85. Vos, P., Garrity, G., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., Schleifer, K. H. and Whitman, W. B. 2011. Bergey's manual of systematic bacteriology. Vol. 3. The Firmicutes. Springer Science & Business Media, New York, USA. 1450 pp.
  86. Vurukonda, S. S. K. P., Giovanardi, D. and Stefani, E. 2018. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int. J. Mol. Sci. 19:952.
  87. Wang, B., Peng, H., Wu, W., Yang, B., Chen, Y., Xu, F., Peng, Y., Qin, Y., Fu, P. and Lu, J. 2021. Genomic insights into biocontrol potential of Bacillus stercoris LJBS06. 3 Biotech 11:458.
  88. Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  89. Weller, D.M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Ann. Rev. Phytopathol. 26:379-407. https://doi.org/10.1146/annurev.py.26.090188.002115
  90. Wisniewski, M., Droby, S., Norelli, J., Liu, J. and Schena, L. 2016. Alternative management technologies for postharvest disease control: the journey from simplicity to complexity. Postharvest Biol. Technol. 122:3-10. https://doi.org/10.1016/j.postharvbio.2016.05.012
  91. Wu, J., Xu, G., Jin, Y., Sun, C., Zhou, L., Lin, G., Xu, R., Wei, L., Fei, H., Wang, D., Chen, J., Lv, Z. and Liu, K. 2018. Isolation and characterization of Bacillus sp. GFP-2, a novel Bacillus strain with antimicrobial activities, from Whitespotted bamboo shark intestine. AMB Express 8:84.
  92. Wu, L., Wu, H., Chen, L., Yu, X., Borriss, R. and Gao, X. 2015. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci. Rep. 5:12975.
  93. Xia, L., Miao, Y., Cao, A., Liu, Y., Liu, Z., Sun, X., Xue, Y., Xu, Z., Xun, W., Shen, Q., Zhang, N. and Zhang, R. 2022. Biosynthetic gene cluster profiling predicts the positive association between antagonism and phylogeny in Bacillus. Nat. Commun. 13:1023.
  94. Xu, W., Yang, Q., Xie, X., Goodwin, P. H., Deng, X., Zhang, J., Sun, R., Wang, Q., Xia, M., Wu, C. and Yang, L. 2022. Genomic and phenotypic insights into the potential of Bacillus subtilis YB-15 isolated from rhizosphere to biocontrol against crown rot and promote growth of wheat. Biology 11:778.
  95. Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K. and Shirata, A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91:181-187. https://doi.org/10.1094/PHYTO.2001.91.2.181
  96. You, W., Ge, C., Jiang, Z., Chen, M., Li, W. and Shao, Y. 2021. Screening of a broad-spectrum antagonist-Bacillus siamensis, and its possible mechanisms to control postharvest disease in tropical fruits. Biol. Control 157:104584.
  97. Zhan, J. 2009. Biosynthesis of bacterial aromatic polyketides. Curr. Top. Med. Chem. 9:1598-1610. https://doi.org/10.2174/156802609789941906
  98. Zhao, T., Deng, X., Xiao, Q., Han, Y., Zhu, S. and Chen, J. 2020. IAA priming improves the germination and seedling growth in cotton (Gossypium hirsutum L.) via regulating the endogenous phytohormones and enhancing the sucrose metabolism. Ind. Crops Prod. 155:112788.
  99. Zuo, C., Deng, G., Li, B., Huo, H., Li, C., Hu, C., Kuang, R., Yang, Q., Dong, T., Sheng, O. and Yi, G. 2018. Germplasm screening of Musa spp. for resistance to Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). Eur. J. Plant Pathol. 151:723-734. https://doi.org/10.1007/s10658-017-1406-3