DOI QR코드

DOI QR Code

Genome-Based Insights into the Thermotolerant Adaptations of Neobacillus endophyticus BRMEA1T

  • Lingmin Jiang (Biological Resource Center, Korea Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ho Le Han (The University of Danang, University of Science and Technology) ;
  • Yuxin Peng (Biological Resource Center, Korea Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Doeun Jeon (Biological Resource Center, Korea Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Donghyun Cho (Biological Resource Center, Korea Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Cha Young Kim (Biological Resource Center, Korea Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jiyoung Lee (Biological Resource Center, Korea Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2023.06.22
  • Accepted : 2023.08.21
  • Published : 2023.09.30

Abstract

The bacterium Neobacillus endophyticus BRMEA1T, isolated from the medicinal plant Selaginella involvens, known as its thermotolerant can grow at 50℃. To explore the genetic basis for its heat tolerance response and its potential for producing valuable natural compounds, the genomes of two thermotolerant and four mesophilic strains in the genus Neobacillus were analyzed using a bioinformatic software platform. The whole genome was annotated using RAST SEED and OrthVenn2, with a focus on identifying potential heattolerance-related genes. N. endophyticus BRMEA1T was found to possess more stress response genes compared to other mesophilic members of the genus, and it was the only strain that had genes for the synthesis of osmoregulated periplasmic glucans. This study sheds light on the potential value of N. endophyticus BRMEA1T, as it reveals the mechanism of heat resistance and the application of secondary metabolites produced by this bacterium through whole-genome sequencing and comparative analysis.

Keywords

Acknowledgement

This research was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through the Agricultural Machinery/Equipment Localization Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (321057051HD020), and by the KRIBB research initiative program (KGM5282331).

References

  1. Abeysinghe, D. T., Kumara, K. A. H., Kaushalya, K. A. D., Chandrika, U. G. and Alwis, D. D. D. H. 2021. Phytochemical screening, total polyphenol, flavonoid content, in vitro antioxidant and antibacterial activities of Sri Lankan varieties of Murraya koenigii and Micromelum minutum leaves. Heliyon 7: e07449.
  2. Adnan, M., Siddiqui, A. J., Jamal, A., Hamadou, W. S., Awadelkareem, A. M., Sachidanandan, M. et al. 2021. Evidence-based medicinal potential and possible role of Selaginella in the prevention of modern chronic diseases: ethnopharmacological and ethnobotanical perspective. Rec. Nat. Prod. 15: 330-355. https://doi.org/10.25135/rnp.222.20.11.1890
  3. Alikhan, N.-F., Petty, N. K., Ben Zakour, N. L. and Beatson, S. A. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12: 402.
  4. Arulprakasam, K. R. and Dharumadurai, D. 2021. Genome mining of biosynthetic gene clusters intended for secondary metabolites conservation in actinobacteria. Microb. Pathog. 161: 105252.
  5. Baek, D., Rokibuzzaman, M., Khan, A., Kim, M. C., Park, H. J., Yun, D.-J. et al. 2019. Plant-growth promoting Bacillus oryzicola YC7007 modulates stress-response gene expression and provides protection from salt stress. Front. Plant Sci. 10: 1646.
  6. Baillo, E. H., Kimotho, R. N., Zhang, Z. and Xu, P. 2019. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes (Basel) 10: 771.
  7. Bratovanov, E. V., Ishida, K., Heinze, B., Pidot, S. J., Stinear, T. P., Hegemann, J. D. et al. 2020. Genome mining and heterologous expression reveal two distinct families of lasso peptides highly conserved in endofungal bacteria. ACS Chem. Biol. 15: 1169-1176. https://doi.org/10.1021/acschembio.9b00805
  8. Cheng, C. and Hua, Z.-C. 2020. Lasso peptides: heterologous production and potential medical application. Front. Bioeng. Biotechnol. 8: 571165.
  9. Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D. R., Da Costa, M. S. et al. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68: 461-466. https://doi.org/10.1099/ijsem.0.002516
  10. De Sousa, D. P., De Almeida Soares Hocayen, P., Andrade, L. N. and Andreatini, R. 2015. A systematic review of the anxiolytic-like effects of essential oils in animal models. Molecules 20: 18620-18660. https://doi.org/10.3390/molecules201018620
  11. de Souza Pedrosa, G. T., de Souza E. L., de Melo A. N. F., da Cruz Almeida, E. T., de Sousa Guedes, J. P., de Carvalho, R. J. et al. 2020. Physiological alterations involved in inactivation of autochthonous spoilage bacteria in orange juice caused by Citrus essential oils and mild heat. Int. J. Food Microbiol. 334: 108837.
  12. Etesami, H. and Beattie, G. A. 2018. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front. Microbiol. 9: 148.
  13. Eyles, T. H., Vior, N. M., Lacret, R. and Truman, A. W. 2021. Understanding thioamitide biosynthesis using pathway engineering and untargeted metabolomics. Chem. Sci. 12: 7138-7150. https://doi.org/10.1039/D0SC06835G
  14. Funabashi, M., Funa, N. and Horinouchi, S. 2008. Phenolic lipids synthesized by type III polyketide synthase confer penicillin resistance on Streptomyces griseus. J. Biol. Chem. 283: 13983-13991. https://doi.org/10.1074/jbc.M710461200
  15. Gupta, S., Chaturvedi, P., Kulkarni, M. G. and Van Staden, J. 2020. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol. Adv. 39: 107462.
  16. Han, L., Yang, G., Zhou, X., Yang, D., Hu, P., Lu, Q. et al. 2013. Bacillus thermocopriae sp. nov., isolated from a compost. Int. J. Syst. Evol. Microbiol. 63: 3024-3029. https://doi.org/10.1099/ijs.0.046953-0
  17. Hara, M. 2020. Potential use of essential oils to enhance heat tolerance in plants. Z. Naturforsch. C J. Biosci. 75: 225-231. https://doi.org/10.1515/znc-2019-0233
  18. Harwood, C. R., Mouillon, J.-M., Pohl, S. and Arnau, J. 2018. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol. Rev. 42: 721-738. https://doi.org/10.1093/femsre/fuy028
  19. Heyrman, J., Vanparys, B., Logan, N. A., Balcaen, A., Rodriguez-Diaz, M., Felske, A. et al. 2004. Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. Int. J. Syst. Evol. Microbiol. 54: 47-57. https://doi.org/10.1099/ijs.0.02723-0
  20. Hingston, P., Chen, J., Dhillon, B. K., Laing, C., Bertelli, C., Gannon, V. et al. 2017. Genotypes associated with Listeria monocytogenes isolates displaying impaired or enhanced tolerances to cold, salt, acid, or desiccation stress. Front. Microbiol. 8: 369.
  21. Jiang, L., Jeon, D., Kim, J., Lee, C. W., Peng, Y., Seo, J. et al. 2021. Pyomelanin-producing Brevundimonas vitisensis sp. nov., isolated from grape (Vitis vinifera L.). Front. Microbiol. 12: 733612.
  22. Jiang, L., Lee, M. H., Jeong, J. C., Kim, D.-H., Kim, C. Y., Kim, S. W. et al. 2019. Neobacillus endophyticus sp. nov., an endophytic bacterium isolated from Selaginella involvens roots. Int. J. Syst. Evol. Microbiol. Online publication. https://doi.org/10.1099/ijsem.0.004581 .
  23. Jiang, L., Seo, J., Peng, Y., Jeon, D., Lee, J. H., Kim, C. Y. et al. 2023. A nostoxanthin-producing bacterium, Sphingomonas nostoxanthinifaciens sp. nov., alleviates the salt stress of Arabidopsis seedlings by scavenging of reactive oxygen species. Front. Microbiol. 14: 1101150.
  24. Joo, S. S., Jang, S. K., Kim, S. G., Choi, J.-S., Hwang, K. W. and Lee, D. I. 2008. Anti-acne activity of Selaginella involvens extract and its non-antibiotic antimicrobial potential on Propionibacterium acnes. Phytother. Res. 22: 335-339. https://doi.org/10.1002/ptr.2319
  25. Katsuyama, Y. and Ohnishi, Y. 2012. Type III polyketide synthases in microorganisms. Methods Enzymol. 515: 359-377. https://doi.org/10.1016/B978-0-12-394290-6.00017-3
  26. Kaur, N., Chahal, K. K., Kumar, A., Singh, R. and Bhardwaj, U. 2019. Antioxidant activity of Anethum graveolens L. essential oil constituents and their chemical analogues. J. Food Biochem. 43: e12782.
  27. Kim, D.-R. and Kwak, Y.-S. 2021. A genome-wide analysis of antibiotic producing genes in Streptomyces globisporus SP6C4. Plant Pathol. J. 37: 389-395. https://doi.org/10.5423/PPJ.NT.03.2021.0047
  28. Knappe, T. A., Linne, U., Zirah, S., Rebuffat, S., Xie, X. and Marahiel, M. A. 2008. Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. J. Am. Chem. Soc. 130: 11446-11454. https://doi.org/10.1021/ja802966g
  29. Komaki, H., Hosoyama, A., Yabe, S., Yokota, A., Uchino, Y. and Takano, H. 2016. Draft genome sequence of Thermogemmatispora onikobensis NBRC 111776T, an aerial mycelium- and spore-forming thermophilic bacterium belonging to the class Ktedonobacteria. Genome Announc. 4: e01156-16.
  30. Kumar, A., Singh, S., Gaurav, A. K., Srivastava, S. and Verma, J. P. 2020. Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Front. Microbiol. 11: 1216.
  31. Lee, I., Kim, Y. O., Park, S.-C. and Chun, J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66: 1100-1103. https://doi.org/10.1099/ijsem.0.000760
  32. Lei, J., Zhu, L., Zheng, Y., Yu, M., Li, G., Zhang, F. et al. 2021. Homogenate-ultrasound-assisted ionic liquid extraction of total fla-vonoids from Selaginella involven: process optimization, composition identification, and antioxidant activity. ACS Omega 6: 14327-14340. https://doi.org/10.1021/acsomega.1c01087
  33. Li, H., Liang, J., Chen, H., Ding, G., Ma, B. and He, N. 2016. Evolutionary and functional analysis of mulberry type III polyketide synthases. BMC Genomics 17: 540.
  34. Li, S.-J., Zhang, X., Wang, X.-H. and Zhao, C.-Q. 2018. Novel natural compounds from endophytic fungi with anticancer activity. Eur. J. Med. Chem. 156: 316-343. https://doi.org/10.1016/j.ejmech.2018.07.015
  35. Li, W., Tang, G.-H. and Yin, S. 2021. Selaginellins from the genus Selaginella: isolation, structure, biological activity, and synthesis. Nat. Prod. Rep. 38: 822-842. https://doi.org/10.1039/D0NP00065E
  36. Meier-Kolthoff, J. P., and Goker, M. 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10: 2182.
  37. Petrovic, J., Stojkovic, D. and Sokovic, M. 2019. Terpene core in selected aromatic and edible plants: natural health improving agents. Adv. Food Nutr. Res. 90: 423-451. https://doi.org/10.1016/bs.afnr.2019.02.009
  38. Qadri, M., Nalli, Y., Jain, S. K., Chaubey, A., Ali, A., Strobel, G. A. et al. 2017. An insight into the secondary metabolism of Muscodor yucatanensis: small-molecule epigenetic modifiers induce expression of secondary metabolism-related genes and production of new metabolites in the endophyte. Microb. Ecol. 73: 954-965. https://doi.org/10.1007/s00248-016-0901-y
  39. Qiu, D., Wen, Y., Xie, Y. and Lin, Q. 2020. The complete chloroplast genome sequence of medicinal plant, Selaginella involvens. Mitochondrial DNA B Resour. 5: 2605-2606. https://doi.org/10.1080/23802359.2020.1781574
  40. Rahimi, T., Niazi, A., Deihimi, T., Taghavi, S. M., Ayatollahi, S. and Ebrahimie, E. 2018. Genome annotation and comparative genomic analysis of Bacillus subtilis MJ01, a new bio-degradation strain isolated from oil-contaminated soil. Funct. Integr. Genomics 18: 533-543. https://doi.org/10.1007/s10142-018-0604-1
  41. Schnitzler, J.-P., Louis, S., Behnke, K. and Loivamaki, M. 2010. Poplar volatiles: biosynthesis, regulation and (eco)physiology of isoprene and stress-induced isoprenoids. Plant Biol. (Stuttg.) 12: 302-316. https://doi.org/10.1111/j.1438-8677.2009.00284.x
  42. Setyawan, A. D. and Darusman, L. K. 2008. Biflavonoid compounds of Selaginella Pal. Beauv. andits benefit. Biodiversitas 9: 64-81. https://doi.org/10.13057/biodiv/d090115
  43. Somashekaraiah, R., Mottawea, W., Gunduraj, A., Joshi, U., Hammami, R. and Sreenivasa, M. Y. 2021. Probiotic and antifungal attributes of Levilactobacillus brevis MYSN105, isolated from an Indian traditional fermented food pozha. Front. Microbiol. 12: 696267.
  44. Stahl, W. and Sies, H. 2005. Bioactivity and protective effects of natural carotenoids. Biochim. Biophys Acta 1740: 101-107. https://doi.org/10.1016/j.bbadis.2004.12.006
  45. Sunita, K., Mishra, I., Mishra, J., Prakash, J. and Arora, N. K. 2020. Secondary metabolites from halotolerant plant growth promoting rhizobacteria for ameliorating salinity stress in plants. Front. Microbiol. 11: 567768.
  46. Tenea, G. N. and Ortega, C. 2021. Genome characterization of Lactiplantibacillus plantarum strain UTNGt2 originated from Theobroma grandiflorum (white cacao) of Ecuadorian Amazon: antimicrobial peptides from safety to potential applications. Antibiotics (Basel) 10: 383.
  47. Wan, Y., King, R., Mitchell, R. A. C., Hassani-Pak, K. and Hawkesford, M. J. 2017. Spatiotemporal expression patterns of wheat amino acid transporters reveal their putative roles in nitrogen transport and responses to abiotic stress. Sci. Rep. 7: 5461.
  48. Wang, F. W., Ye, Y. H., Chen, J. R., Wang, X. T., Zhu, H. L., Song, Y. C. et al. 2006. Neoplaether, a new cytotoxic and antifungal endophyte metabolite from Neoplaconema napellum IFB-E016. FEMS Microbiol. Lett. 261: 218-223.
  49. Woo, S., Chae, H.-S., Kim, J. and Chin, Y. W. 2021. Selaginellin derivatives from Selaginella tamariscina and their upregulating effects on low-density lipoprotein receptor expression. J. Nat. Prod. 84: 857-864. https://doi.org/10.1021/acs.jnatprod.0c01123
  50. Zhao, J., Shan, T., Mou, Y. and Zhou, L. 2011. Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev. Med. Chem. 11: 159-168. https://doi.org/10.2174/138955711794519492