
Bull. Korean Math. Soc. 60 (2023), No. 5, pp. 1155–1179

https://doi.org/10.4134/BKMS.b220514

pISSN: 1015-8634 / eISSN: 2234-3016

SHARP INEQUALITIES INVOLVING THE CHEN-RICCI

INEQUALITY FOR SLANT RIEMANNIAN SUBMERSIONS

Mehmet Akif Akyol and Nergiz (Önen) Poyraz

Abstract. Main objective of the present paper is to establish Chen in-

equalities for slant Riemannian submersions in contact geometry. In this
manner, we give some examples for slant Riemannian submersions and

also investigate some curvature relations between the total space, the base

space and fibers. Moreover, we establish Chen-Ricci inequalities on the
vertical and the horizontal distributions for slant Riemannian submer-

sions from Sasakian space forms.

1. Introduction

In differential geometry, a sharp inequality for a submanifold in a real space
form involving intrinsic invariants of submanifolds and squared mean curvature,
the main extrinsic invariant were established by B. Y. Chen in [12] and [13].
Many related results have been introduced by various geometers for different
submanifolds in different ambient spaces, see [5,6,17,21–23,26,29,30,34,37,41,
44]. In 2011, B. Y. Chen [16] published a book which covered an extensive and
comprehensive survey on Riemannian (pseudo) submanifolds and δ-invariants
as well as their applications.

One of the main flaw in Riemannian geometry is to define suitable maps
between Riemannian manifolds that will enable to compare their geometric
properties. In 1960s, Riemannian submersions were independently introduced
by B. O’Neill [32] and A. Gray [20] as follows:

A differentiable map Ψ : (M1, g1) → (M2, g2) between Riemannian manifolds
(M1, g1) and (M2, g2) is called a Riemannian submersion if Ψ∗ is onto and it
satisfies

g2(Ψ∗X1,Ψ∗X2) = g1(X1, X2)(1)

for X1, X2 ∈ Γ(TM1), where Ψ∗ denotes the derivative map.

Received July 25, 2022; Revised March 25, 2023; Accepted June 16, 2023.

2020 Mathematics Subject Classification. Primary 53C15, 53B20.
Key words and phrases. Riemannian submersion, slant submersion, Chen-Ricci inequality,

Sasakian manifold, horizontal distribution.

©2023 Korean Mathematical Society

1155



1156 M. A. AKYOL AND N. (ÖNEN) POYRAZ

We know that Riemannian submersions are related with physics and have
applications in Yang-Mills theory [9, 43], Kaluza-Klein theory [8, 24], Super-
gravity and superstring theories [25, 31]. In 2005, B. Y. Chen proved optimal
relationship between Riemannian submersions and minimal immersions in [14]
and [15]. In 2012, a sharp relationship between the δ-invariants and Riemann-
ian submersions with totally geodesic fibers was established by in [4]. In 2017,
sharp inequalities involving the Ricci curvature for Riemannian submersions
were obtained in [21].

In 2010, B. Şahin [35] introduced the notions of anti-invariant Riemann-
ian submersions as a natural generalization of almost Hermitian submersions
which was defined by B. Watson in [42]. J. W. Lee [28] introduced the notions
of anti-invariant Riemannian submersions in contact geometry. After that,
B. Şahin [36] defined slant submersions from almost Hermitian manifolds into
Riemannian manifolds as a generalization both almost Hermitian submersions
and anti-invariant Riemannian submersions. Then, the notion of slant submer-
sions from Sasakian manifolds defined by İ. K. Erken and C. Murathan in [18].
Many results related to Riemannian submersions have been studied by various
geometers for different total spaces, see [1–3,33,39]. Most of the studies related
to Riemannian or almost Hermitian submersions can be found in [19,38].

The paper is organized as follows. In Section 2, we give brief introduc-
tion about Riemannian submersions, curvature relations and Sasakian space
forms. In Section 3, we obtain some inequalities involving the Ricci curva-
ture and the scalar curvature on the vertical and horizontal distributions for
slant Riemannian submersions from Sasakian space forms. The equality cases
are also discussed. Moreover, we prove Chen-Ricci inequalities on the vertical
and horizontal distributions for slant Riemannian submersions from Sasakian
space forms. Finally, we find relationships between the intrinsic and extrinsic
invariants using fundamental tensors. The equality cases are also considered.

2. Preliminaries

2.1. Riemannian submersions and O’Neill tensors

Now, we give the definition of Riemannian submersions and the O’Neill
tensors.

Definition. Let (M̃, g1) and (M, g2) be Riemannian manifolds, where dim(M̃)

= m1, dim(M) = m2 and m1 > m2. A Riemannian submersion Ψ : M̃ → M

is a map of M̃ onto M satisfying the following conditions:

• Ψ has maximal rank.
• The metric of horizontal vectors is preserved by the differential Ψ∗.

For each q ∈ M , Ψ−1(q) is an (m1 − m2)-dimensional submanifold of M̃ .

The submanifolds Ψ−1(q), q ∈ M , are called fibers. A vector field on M̃ is
called vertical and horizontal if it is always tangent to fibers and orthogonal to
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fibers, respectively. A vector field ξ on M̃ is called basic if ξ is horizontal and

Ψ-related to a vector field ξ′ on M , that is, Ψ∗ξp = ξ′Ψ∗
(p) for all p ∈ M̃ . The

projection morphisms on the distributions ker Ψ∗ and (kerΨ∗)
⊥
are denoted by

V and H, respectively. The sections of V and H are called the vertical vector
fields and horizontal vector fields, respectively. Then, one has:

TpM̃ = Vp ⊕Hp.

The O’Neill tensors are defined by means of the vertical and horizontal
projections

v : Γ(TM̃) → Γv(TM̃), h : Γ(TM̃) → Γh(TM̃)

according to the formulas:

T (E,F ) = TEF = h∇̃vEvF + v∇̃vEhF,(2)

A(E,F ) = AEF = v∇̃hEhF + h∇̃hEvF(3)

for any E,F ∈ Γ(TM̃). Here ∇̃ denotes the Levi-Civita connection of (M̃, g1).
It is easy to prove that T and A are, respectively, vertical and horizontal tensor
fields, that is:

TEF = TvEF, AEF = AhEF, E, F ∈ X (M).

We also note that TUV = TV U for any U, V ∈ Γv(TM̃) and AXY = −AYX

for any X,Y ∈ Γh(TM̃).

Remark 2.1. The following formulas are also an immediate consequence of (2)
and (3)

∇̃UV = TUV + v
(
∇̂UV

)
,(4)

∇̃Uξ = TUξ + h
(
∇̃Uξ

)
,(5)

∇̃ξU = v
(
∇̃ξU

)
+AξU,(6)

∇̃ξη = Aξη + h
(
∇̃ξη

)
(7)

for any ξ, η ∈ Γh(TM̃), U, V ∈ Γv(TM̃).

Moreover, if ξ is basic, then h (∇Uξ) = h (∇ξU) = AξU , [ξ, U ] being vertical.
The following lemma shows that the O’Neill tensors are anti-symmetric with

respect to g1.

Lemma 2.2. Let (M̃, g1) and (M, g2) be Riemannian manifolds admitting a

Riemannian submersion Ψ : M̃ →M . For E,F,G ∈ Γ(TM̂), we have

g1(TEF,G) = −g1(F, TEG),(8)

g1(AEF,G) = −g1(F,AEG).(9)

Remark 2.3. In this paper, we will assume all horizontal vector fields as basic
vector fields.
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2.2. Curvature relations on Riemannian submersions

Denote by R̃, R, R̂ and R∗ the Riemannian curvature tensor of Riemannian

manifolds M̃ , M , the vertical distribution V and the horizontal distribution H,
respectively. Then the Gauss-Codazzi type equations are given by

(10) R̃(U, V, F,W ) = R̂(U, V, F,W ) + g1(TUW, TV F )− g1(TVW, TUF ),

R̃(X,Y, Z,H) = R∗(X,Y, Z,H)− 2g1(AXY,AZH)

+ g1(AY Z,AXH)− g1(AXZ,AYH),(11)

R̃(X,V, Y,W ) = g1((∇̃XT )(V,W ), Y ) + g1((∇̃V A)(X,Y ),W )

− g1(TVX, TWY ) + g1(AYW,AXV ),(12)

where

(13) Ψ∗(R
∗(X,Y )Z) = R(Ψ∗X,Ψ∗Y )Ψ∗Z

for all U, V, F,W ∈ Γv(TM̃) and X,Y, Z,H ∈ Γh(TM̃).
Moreover, the mean curvature vector field H of any fiber of Riemannian

submersion Ψ is given by

(14) N = rH, N =

r∑
j=1

TUjUj ,

where {U1, . . . , Ur} is an orthonormal basis of the vertical distribution V. Fur-
thermore, Ψ has totally geodesic fibers if T vanishes on Γh(TM̃) and Γv(TM̃).

2.3. Sasakian space forms

A (2m+1)-dimensional Riemannian manifold (M̃, g1) is said to be a Sasakian

manifold if it admits an endomorphism ϕ of its tangent bundle TM̃ , a vector
field ξ and a 1-form η satisfying

ϕ2 = −Id+ η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0,(15)

g1(ϕX, ϕY ) = g1(X,Y )− η(X)η(Y ), η(X) = g1(X, ξ),(16)

(∇Xϕ)Y = g1(X,Y )ξ − η(Y )X, ∇Xξ = −ϕX(17)

for any vector fields X, Y on TM̃ , where ∇ denotes the Riemannian connection
with respect to g1.

A plane section π in TpM̃ is called a ϕ-section if it is spanned by X and ϕX,
where X is a unit tangent vector orthogonal to ξ. The sectional curvature of a
ϕ-section is called a ϕ-sectional curvature. A Sasakian manifold with constant
ϕ-sectional curvature c is said to be a Sasakian space form and is denoted by

M̃(c).

The curvature tensor of R̃ of a Sasakian space form M̃(c) is given by [7]

R̃(X,Y )Z =
(c+ 3)

4
{g1(Y, Z)X − g1(X,Z)Y }+ (c− 1)

4
{η(X)η(Z)Y
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− η(Y )η(Z)X + g1(X,Z)η(Y )ξ − g1(Y, Z)η(X)ξ

+ g1(ϕY,Z)ϕX − g1(X,ϕZ)ϕY − 2g1(ϕX, Y )ϕZ}(18)

for any tangent vector fields X, Y , Z on M̃(c).

3. The geometry of slant Riemannian submersions

In this section, we are going to introduce the notion of slant Riemannian
submersions from Sasakian manifolds onto Riemannian submersions. We men-
tion examples and giving the characterization equations that we will use in the
next future.

Definition. Let M̃(ϕ, ξ, η, g1) be a Sasakian manifold and (M, g2) be a Rie-
mannian manifold. A Riemannian submersion Ψ : M(ϕ, ξ, η, g1) → (M, g2) is
said to be slant if for any nonzero vector X ∈ Γ((kerΨ∗)−{ξ}), the angle θ(X)
between ϕX and the space kerΨ∗ is a constant (which is independent of the

choice of p ∈ M̃ and of X ∈ Γ((kerΨ∗)− {ξ})). The angle θ is called the slant
angle of the slant submersion.

Let Ψ : (M̃, g1, ϕ, ξ, η) →
(
M, g2

)
be a slant Riemannian submersion from

a Sasakian manifold (M̃, g1, ϕ, ξ, η) to a Riemannian manifold
(
M, g2

)
. Then

for any U ∈ Γ (kerΨ∗), we put

(19) ϕU = ψU + ωU,

where ψU and ωU are vertical and horizontal components of ϕU , respectively.

Similarly, for any X ∈ Γ (kerΨ∗)
⊥
, we have

(20) ϕX = BX + CX,
where BX (resp. CX) is vertical part (resp. horizontal part) of ϕX.

First of all, if ξ is orthogonal to kerΨ∗, then we give the following theorem.

Theorem 3.1. Let Ψ be a slant Riemannian submersion from a Sasakian

manifold M̃(ϕ, ξ, η, g1) onto a Riemannian manifold (M, g2). If ξ is orthogonal
to kerF∗, then Ψ is anti-invariant.

The following theorem is a characterization for slant submersions of a
Sasakian manifold. The proof of it exactly same with slant immersions, see
[10]. Therefore we omit its proof.

Theorem 3.2. Let Ψ be a Riemannian submersion from a Sasakian mani-

fold M̃ (ϕ, ξ, η, g1) onto a Riemannian manifold
(
M, g2

)
. Then, π is a slant

Riemannian submersion if and only if there exists a constant λ ∈ [0, 1] such
that

(21) ψ2 = −λ(I − η ⊗ ξ).

Furthermore, in such a case, if θ is the slant angle of Ψ, it satisfies that λ =
cos2 θ. By using (16), (19) and (21), we have the following lemma.
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Lemma 3.3. Let Ψ be a slant Riemannian submersion from a Sasakian man-

ifold M̃ (ϕ, ξ, η, g1) onto a Riemannian manifold
(
M, g2

)
with slant angle θ.

Then the following relations are valid

g1(ψU,ψV ) = cos2 θ (g1(U, V )− η(U)η(V )) ,(22)

g1(ωU, ωV ) = sin2 θ (g1(U, V )− η(U)η(V ))(23)

for any U, V ∈ Γ (kerΨ∗).

Let (M̃(c), g1), (M, g2) be a Sasakian space form and a Riemannian man-

ifold, respectively and Ψ : M̃(c) → M be a slant Riemannian submersion.

Furthermore, let {U1, . . . , Ur, X1, . . . , Xn} be an orthonormal basis of TpM̃(c)
such that V = span{U1, . . . , Ur = ξ}, H = span{X1, . . . , Xn}. Then we may
consider a slant orthonormal frame as follows:

U1, U2 =
1

cos θ
ψU1, . . . , U2k =

1

cos θ
ψU2k, Ur = ξ.

We have

g1(ϕU1, U2) = g1(ϕU1,
1

cos θ
ψU1) =

1

cos θ
g1(ϕU1, ψU1)

=
1

cos θ
g1(ψU1, ψU1) = cos θ

and, in same way,
g2(ϕUi, Ui+1) = cos2 θ

then
r∑

i=1

g2(ϕUi, Ui+1) = (r − 1) cos2 θ.

Similarly, if ξ is horizontal, then we obtain

g2(ϕUi, Ui+1) = cos2 θ

and
r∑

i=1

g2(ϕUi, Ui+1) = r cos2 θ.

4. Chen-Ricci inequality and Chen inequalities

Let (M̃(c), g1), (M, g2) be a Sasakian space form and a Riemannian man-

ifold, respectively and Ψ : M̃(c) → M be a slant Riemannian submersion.

Furthermore, let {U1, . . . , Ur, X1, . . . , Xn} be an orthonormal basis of TpM̃(c)
such that V = span{U1, . . . , Ur}, H = span{X1, . . . , Xn}. Then using (10),
(11) and (18), we have

R̂(U, V, F,W ) =
(c+ 3)

4
{g1(V, F )g1(U,W )− g1(U,F )g1(V,W )}

+
(c− 1)

4
{η(U)η(F )g1(V,W )− η(V )η(F )g1(U,W )
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+ η(V )η(W )g1(U,F )− η(U)η(W )g1(V, F )

+ g1(ϕV, F )g1(ϕU,W )− g1(ϕU, F )g1(ϕV,W )

− 2g1(ϕU, V )g1(W,ϕF )} − g1(TUW, TV F ) + g1(TVW, TUF ),(24)

R∗(X,Y, Z,H) =
(c+ 3)

4
{g1(Y,Z)g1(X,H)− g1(X,Z)g1(Y,H)}

+
(c− 1)

4
{η(X)η(Z)g1(Y,H)− η(Y )η(Z)g1(X,H)

+ η(Y )η(H)g1(X,Z)− η(X)η(H)g1(Y,Z)

+ g1(ϕY,Z)g1(ϕX,H)− g1(ϕY,H)g1(ϕX,Z)

− 2g1(ϕX, Y )g1(H,ϕZ)}+ 2g1(AXY,AZH)

− g1(AY Z,AXH) + g1(AXZ,AYH).(25)

Theorem 4.1. Let Ψ : M̃(c) →M be a slant Riemannian submersion from a

Sasakian space form (M̃(c), g1) onto a Riemannian manifold (M, g2) such that
ξ is vertical. Then

R̂ic(U) ≥ (c+ 3)

4
(r − 1) +

(c− 1)

4
{(2− r − 3 cos2 θ)(η(U))2

+ 2− 3 sin2 θ} − rg1(TUU,H).(26)

The equality case of (26) holds for a unit vertical vector U ∈ Vp(M̃(c)) if and
only if each fiber is totally geodesic.

Proof. From (24) we obtain

R̂ic(U) =
(c+ 3)

4
(r − 1)g1(U,U)− (c− 1)

4
{(2− r)(η(U))2

− g1(U,U) + 3

r∑
i=1

g2(ϕU,Ui)} − rg1(TUU,H) + ∥TUUi∥2 ,(27)

where

R̂ic(U) =

r∑
i=1

R̂(U,Ui, Ui, U).

Since

(28)

r∑
i=1

g2(ϕU,Ui) = cos2 θ(g1(U,U)− (η(U))2),

using last equation in (27), we get (26). □

Theorem 4.2. Let Ψ : M̃(c) →M be a slant Riemannian submersion from a

Sasakian space form (M̃(c), g1) onto a Riemannian manifold (M, g2) such that
ξ is vertical. Then

(29) 2τ̂ ≥ (c+ 3)

4
r(r − 1) +

(c− 1)

4
(r − 1)(1− 3 sin2 θ)− r2 ∥H∥2 .
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The equality case of (29) holds if and only if each fiber is totally geodesic.

Proof. Using the symmetry of T in (24), we have

2τ̂ =
(c+ 3)

4
r(r − 1) +

(c− 1)

4
{(2− 2r) + 3(r − 1) cos2 θ}

− r2 ∥H∥2 +
r∑

i,j=1

g1(TUiUj , TUiUj),(30)

which implies (29), where

τ̂ =
∑

1≤i<j≤r

R̂(Ui, Uj , Uj , Ui).

□

For the horizontal distribution, in view of (25), since Ψ is a slant Riemannian
submersion and ξ is vertical, using the anti-symmetry of A, we find

2τ∗ =
(c+ 3)

4
n(n− 1) + 3

n∑
i,j=1

{ (c− 1)

4
g1(CXi, Xj)g1(CXi, Xj)

− g1(AXi
Xj ,AXi

Xj)},(31)

where

(32) τ∗ =
∑

1≤i<j≤r

R̂(Xi, Xj , Xj , Xi).

Now we define

(33) ∥C∥2 =

n∑
i=1

g2(CXi, Xj),

then from (31) and (33) we obtain

(34) 2τ∗ =
(c+ 3)

4
n(n− 1) +

3(c− 1)

4
∥C∥2 − 3

n∑
i,j=1

g1(AXi
Xj ,AXi

Xj).

From (34) we obtain the following theorem.

Theorem 4.3. Let Ψ : M̃(c) →M be a slant Riemannian submersion from a

Sasakian space form (M̃(c), g1) onto a Riemannian manifold (M, g2) such that
ξ is vertical. Then

(35) 2τ∗ ≤ (c+ 3)

4
n(n− 1) +

3(c− 1)

4
∥C∥2 .

The equality case of (35) holds if and only if H(M̃) is integrable.

Now, we suppose that ξ is horizontal.
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Theorem 4.4. Let Ψ : M̃(c) →M be a slant Riemannian submersion from a

Sasakian space form (M̃(c), g1) onto a Riemannian manifold (M, g2) such that
ξ is horizontal. Then we have

(36) 2τ̂ ≥ (c+ 3)

4
r(r − 1) +

3(c− 1)

4
r cos2 θ − r2 ∥H∥2 .

The equality case of (36) holds if and only if each fiber is totally geodesic.

Proof. Using the symmetry of T in (24), we have

(37) 2τ̂ =
(c+ 3)

4
r(r−1)+

3(c− 1)

4
r cos2 θ−r2 ∥H∥2+

r∑
i,j=1

g1(TUi
Uj , TUi

Uj),

which implies (36). □

For the horizontal distribution, from (25), since ξ is horizontal and A is
anti-symmetric, after some computations, we have

2τ∗ =
(c+ 3)

4
n(n− 1) +

(c− 1)

4
[(2− 2n) + 3 ∥C∥2]

− 3

n∑
i,j=1

g1(AXi
Xj ,AXi

Xj).(38)

From (38) we obtain the following theorem.

Theorem 4.5. Let Ψ : M̃(c) →M be a slant Riemannian submersion from a

Sasakian space form (M̃(c), g1) onto a Riemannian manifold (M, g2) such that
ξ is horizontal. Then we have

(39) 2τ∗ ≤ (c+ 3)

4
n(n− 1) +

(c− 1)

4
[(2− 2n) + 3 ∥C∥2].

The equality case of (39) holds if and only if H(M̃) is integrable.

Let (M̃(c), g1) be a Sasakian space form and (M, g2) a Riemannian man-

ifold. Assume that Ψ : M̃(c) → M is a slant Riemannian submersion and

{U1, . . . , Ur, X1, . . . , Xn} is an orthonormal basis of TpM̃(c) such that Vp(M̃) =

span{U1, . . . , Ur}, Hp(M̃) = span{X1, . . . , Xn}. Now we denote T s
ij by

(40) T s
ij = g1(TUi

Uj , Xs),

where 1 ≤ i, j ≤ r and 1 ≤ s ≤ n (see [21]).
Similarly, we denote Aα

ij by

(41) Aα
ij = g1(AXi

Xj , Uα),

where 1 ≤ i, j ≤ n and 1 ≤ α ≤ r. From [21], we use

(42) δ(N) =

n∑
i=1

r∑
k=1

g1((∇Xi
T )Uk

Uk, Xi).
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From the binomial theorem there is such as the following equation between the
tensor fields T :

n∑
s=1

r∑
i,j=1

(T s
ij)

2 =
1

2
r2 ∥H∥2 + 1

2
(T s

11 − T s
22 − · · · − T s

rr)
2

+ 2

n∑
s=1

r∑
j=2

(T s
1j)

2 − 2

n∑
s=1

∑
2≤i<j≤r

(T s
iiT s

jj − (T s
ij)

2).(43)

Theorem 4.6. Let Ψ : M̃(c) →M be a slant Riemannian submersion from a

Sasakian space form (M̃(c), g1) onto a Riemannian manifold (M, g2) such that
ξ is vertical. Then we have

R̂ic(U1) ≥
(c+ 3)

4
(r − 1) +

(c− 1)

4
[(2− r − 3 cos2 θ)(η(U1))

2

+ 2− 3 sin2 θ]− 1

4
r2 ∥H∥2 .(44)

The equality case of (44) holds if and only if

T s
11 = T s

22 + · · ·+ T s
rr,

T s
1j = 0, j = 2, . . . , r.

Proof. Using (40) in (30) and the symmetry of T , we can write

2τ̂ =
(c+ 3)

4
r(r − 1) +

(c− 1)

4
(r − 1)(1− 3 sin2 θ)

− r2 ∥H∥2 +
n∑

s=1

r∑
i,j=1

(T s
ij)

2.(45)

Thus using (43) in (45) we obtain

2τ̂ =
(c+ 3)

4
r(r − 1) +

(c− 1)

4
(r − 1)(1− 3 sin2 θ)− 1

2
r2 ∥H∥2

+
1

2
(T s

11 − T s
22 − · · · − T s

rr)
2 + 2

n∑
s=1

r∑
j=2

(T s
1j)

2

− 2

n∑
s=1

∑
2≤i<j≤r

(T s
iiT s

jj − (T s
ij)

2).(46)

Then from (46) we have

2τ̂ ≥ (c+ 3)

4
r(r − 1) +

(c− 1)

4
(r − 1)(1− 3 sin2 θ)− 1

2
r2 ∥H∥2

− 2

n∑
s=1

∑
2≤i<j≤r

(T s
iiT s

jj − (T s
ij)

2).(47)
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Moreover, taking U =W = Ui, V = F = Uj in (10) and using (40), we obtain

2
∑

2≤i<j≤r

R̃(Ui, Uj , Uj , Ui) = 2
∑

2≤i<j≤r

R̂(Ui, Uj , Uj , Ui)

+ 2

n∑
s=1

∑
2≤i<j≤r

(T s
iiT s

jj − (T s
ij)

2).(48)

Using (48) in (47), we get

2τ̂ ≥ (c+ 3)

4
r(r − 1) +

(c− 1)

4
(r − 1)(1− 3 sin2 θ)− 1

2
r2 ∥H∥2

+ 2
∑

2≤i<j≤r

R̂(Ui, Uj , Uj , Ui)− 2
∑

2≤i<j≤r

R̃(Ui, Uj , Uj , Ui).(49)

Furthermore, we have

2τ̂ = 2
∑

2≤i<j≤r

R̂(Ui, Uj , Uj , Ui) + 2

r∑
j=1

R̂(U1, Uj , Uj , U1).(50)

Considering (50) in (49), we get

2R̂ic(U1) ≥
(c+ 3)

4
r(r − 1) +

3(c− 1)

4
(r − 1)(1− 3 sin2 θ)− 1

2
r2 ∥H∥2

− 2
∑

2≤i<j≤r

R̃(Ui, Uj , Uj , Ui).(51)

Since M̃(c) is a Sasakian space form, its curvature tensor R̃ satisfies the equality
(18), we have∑

2≤i<j≤r

R̃(Ui, Uj , Uj , Ui) =
(c+ 3)

8
(r − 2)(r − 1)

+
(c− 1)

4
[(r − 2 + 3 cos2 θ)(η(U1))

2

+ 2− r +
3(r − 3)

2
cos2 θ].(52)

From (51) and (52) we obtain (44). □

Theorem 4.7. Let Ψ : M̃(c) →M be a slant Riemannian submersion from a

Sasakian space form (M̃(c), g1) onto a Riemannian manifold (M, g2) such that
ξ is vertical. Then we have

(53) Ric∗(X1) ≤
(c+ 3)

4
(n− 1) +

3(c− 1)

4
∥CX1∥2 .

The equality case of (53) holds if and only if

Aα
1j = 0, j = 2, . . . , n.
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Proof. From (34), we have

(54) 2τ∗ =
(c+ 3)

4
n(n− 1) +

3(c− 1)

4
∥C∥2 − 3

r∑
α=1

n∑
i,j=1

(Aα
ij)

2.

Since A is anti-symmetric on H(M̃(c)), (54) can be written as

2τ∗ =
(c+ 3)

4
n(n− 1) +

3(c− 1)

4
∥C∥2 − 6

r∑
α=1

n∑
j=2

(Aα
1j)

2

− 6

r∑
α=1

∑
2≤i<j≤n

(Aα
ij)

2.(55)

Furthermore, taking X = H = Xi, Y = Z = Xj in (11) and using (41), we
obtain

2
∑

2≤i<j≤n

R̃(Xi, Xj , Xj , Xi) = 2
∑

2≤i<j≤n

R∗(Xi, Xj , Xj , Xi)

+ 6

r∑
α=1

∑
2≤i<j≤n

(Aα
ij)

2.(56)

Using (56) in (55), we get

2τ∗ =
(c+ 3)

4
n(n− 1) +

3(c− 1)

4
∥C∥2 − 6

r∑
α=1

n∑
j=2

(Aα
1j)

2

+ 2
∑

2≤i<j≤n

R∗(Xi, Xj , Xj , Xi)− 2
∑

2≤i<j≤n

R̃(Xi, Xj , Xj , Xi).(57)

Besides, from (18) we obtain∑
2≤i<j≤n

R̃(Xi, Xj , Xj , Xi) =
(c+ 3)

8
(n− 2)(n− 1)

+
3(c− 1)

4

∑
2≤i<j≤n

g2(CXi, Xj).(58)

Then from (57) and (58)

(59) 2Ric∗(X1) =
(c+ 3)

2
(n− 1) +

3(c− 1)

2
∥CX1∥2 − 6

r∑
α=1

n∑
j=2

(Aα
1j)

2,

which completes the proof. □

Now, we compute the Chen-Ricci inequality between the vertical and hori-
zontal distributions for the case of ξ is vertical. For the scalar curvature τ̃ of
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M̃(c), we obtain

(60) 2τ̃ =

n∑
s=1

R̃ic(Xs, Xs) +

r∑
k=1

R̃ic(Uk, Uk),

2τ̃ =

r∑
j,k=1

R̃(Uj , Uk, Uk, Uj) +

n∑
i=1

r∑
k=1

R̃(Xi, Uk, Uk, Xi)

+

n∑
i,s=1

R̃(Xi, Xs, Xs, Xi) +

n∑
s=1

r∑
j=1

R̃(Uj , Xs, Xs, Uj).(61)

Let denote ∥∥T V∥∥2 =

n∑
i=1

r∑
k=1

g1(TUk
Xi, TUk

Xi),(62)

∥∥T H∥∥2 =

r∑
j,k=1

g1(TUj
Uk, TUj

Uk),(63)

∥∥AV∥∥2 =

n∑
i,j=1

g1(AXi
Xj ,AXi

Xj),(64)

∥∥AH∥∥2 =

n∑
i=1

r∑
k=1

g1(AXiUk,AXiUk).(65)

Theorem 4.8. Let Ψ : M̃(c) →M be a slant Riemannian submersion from a

Sasakian space form (M̃(c), g1) onto a Riemannian manifold (M, g2) such that
ξ is vertical. Then we have

(c+ 3)

4
(nr + n+ r − 2) +

(c− 1)

4
[−1− n+ (2− r − 3 cos2 θ)(η(U1))

2

+ 3(cos2 θ + ∥B∥2 + ∥CX1∥2)]

≤ R̂ic(U1) +Ric∗(X1) +
1

4
r2 ∥H∥2 + 3

r∑
α=1

n∑
s=2

(Aα
1s)

2 − δ(N)

+
∥∥T V∥∥2 − ∥∥AH∥∥2 .(66)

The equality case of (66) holds if and only if

T s
11 = T s

22 + · · ·+ T s
rr,

T s
1j = 0, j = 2, . . . , r.

Proof. Since M̃(c) is a Sasakian space form, from (61) we obtain

2τ̃ =
(c+ 3)

4
(n+ r)(n+ r − 1) +

(c− 1)

4
[2(1− r − n)



1168 M. A. AKYOL AND N. (ÖNEN) POYRAZ

+ 3{(r − 1) cos2 θ + ∥C∥2 + 2

n∑
i=1

r∑
k=1

g2(BXi, Uk)}].(67)

Now, we define

(68) ∥B∥2 =

n∑
i=1

r∑
k=1

g2(BXi, Uk).

On the other hand, using the Gauss-Codazzi type equations (10), (11) and
(12), we get

2τ̃ = 2τ̂ + 2τ∗ + r2 ∥H∥2 −
r∑

k,j=1

g1(TUk
Uj , TUk

Uj)

+ 3

n∑
i,s=1

g1(AXi
Xs,AXi

Xs)−
n∑

i=1

r∑
k=1

g1((∇Xi
T )Uk

Uk, Xi)

+

n∑
i=1

r∑
k=1

(g1(TUk
Xi, TUk

Xi)− g1(AXiUk,AXiUk))

−
n∑

s=1

r∑
j=1

g1((∇Xs
T )Uj

Uj , Xs) +

n∑
s=1

r∑
j=1

(g1(TUj
Xs, TUj

Xs)

− g1(AXs
Uj ,AXs

Uj)).(69)

Thus from (43) and (69), we derive

2τ̃ = 2τ̂ + 2τ∗ +
1

2
r2 ∥H∥2 − 1

2
(T s

11 − T s
22 − · · · − T s

rr)
2

− 2

n∑
s=1

r∑
j=2

(T s
1j)

2 + 2

n∑
s=1

∑
2≤i<j≤r

(T s
iiT s

jj − (T s
ij)

2)

+ 6

r∑
α=1

n∑
s=2

(Aα
1s)

2 + 6

r∑
α=1

∑
2≤i<s≤n

(Aα
is)

2

+

n∑
i=1

r∑
k=1

(g1(TUk
Xi, TUk

Xi)− g1(AXi
Uk,AXi

Uk))

− 2δ(N) +

n∑
s=1

r∑
j=1

(g1(TUj
Xs, TUj

Xs)− g1(AXs
Uj ,AXs

Uj)).(70)

Using (48), (56), (67) and (68) in (70), we obtain

(c+ 3)

4
(n+ r)(n+ r − 1) +

(c− 1)

4
[2(1− r − n) + 3{(r − 1) cos2 θ

+ 2 ∥B∥2 + ∥C∥2}]

= 2R̂ic(U1) + 2Ric∗(X1) +
1

2
r2 ∥H∥2 − 1

2
(T s

11 − T s
22 − · · · − T s

rr)
2
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− 2

n∑
s=1

r∑
j=2

(T s
1j)

2 + 6

r∑
α=1

n∑
s=2

(Aα
1s)

2

+

n∑
i=1

r∑
k=1

{g1(TUk
Xi, TUk

Xi)− g1(AXi
Uk,AXi

Uk)}

− 2δ(N) +

n∑
s=1

r∑
j=1

(g1(TUj
Xs, TUj

Xs)− g1(AXs
Uj ,AXs

Uj))

+ 2
∑

2≤i<j≤r

R(Ui, Uj , Uj , Ui) + 2
∑

2≤i<j≤n

R(Xi, Xj , Xj , Xi).(71)

Moreover, (52) and (58) in (71) we obtain (66). □

Theorem 4.9. Let Ψ : M̃(c) →M be a slant Riemannian submersion from a

Sasakian space form (M̃(c), g1) onto a Riemannian manifold (M, g2) such that
ξ is horizontal. Then we have

(72) R̂ic(U1) ≥
(c+ 3)

4
(r − 1)− 3(c− 1)

4
cos2 θ − 1

4
r2 ∥H∥2 .

The equality case of (72) holds if and only if

T s
11 = T s

22 + · · ·+ T s
rr,

T s
1j = 0, j = 2, . . . , r.

Proof. Similar to proof of Theorem 4.6, we obtain our theorem. □

Theorem 4.10. Let Ψ : M̃(c) →M be a slant Riemannian submersion from a

Sasakian space form (M̃(c), g1) onto a Riemannian manifold (M, g2) such that
ξ is horizontal. Then we have

Ric∗(X1) ≤
(c+ 3)

4
(n−1)+

(c− 1)

4
[−1− (n− 2)(η(X1))

2+3 ∥CX1∥2].(73)

The equality case of (73) holds if and only if

Aα
1j = 0, j = 2, . . . , n.

Proof. Similar to proof of Theorem 4.7, we get our theorem. □

Theorem 4.11. Let Ψ : M̃(c) →M be a slant Riemannian submersion from a

Sasakian space form (M̃(c), g1) onto a Riemannian manifold (M, g2) such that
ξ is horizontal. Then

(c+ 3)

4
(nr + n+ r − 2) +

(c− 1)

4
[(2− n)(η(X1))

2 − r − 1

+ 3(cos2 θ + ∥B∥2 + ∥CX1∥2)]

≤ R̂ic(U1) +Ric∗(X1) +
1

4
r2 ∥H∥2 + 3

r∑
α=1

n∑
s=2

(Aα
1s)

2 − δ(N)
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+
∥∥T V∥∥2 − ∥∥AH∥∥2 .(74)

The equality case of (74) holds if and only if

T s
11 = T s

22 + · · ·+ T s
rr,

T s
1j = 0, j = 2, . . . , r.

Proof. Since M̃(c) is a Sasakian space form, from (61) we obtain

2τ̃ =
(c+ 3)

4
(n+ r)(n+ r − 1) +

(c− 1)

4
{−2(r − 1 + n)

+ 3(r cos2 θ + 2 ∥B∥2 + ∥C∥2)}.(75)

Using (48), (56) and (75) in (70) we get,

(c+ 3)

4
(n+ r)(n+ r − 1) +

(c− 1)

4
{−2(r − 1 + n)

+ 3(r cos2 θ + 2 ∥B∥2 + ∥C∥2)}

= 2R̂ic(U1) + 2Ric∗(X1) +
1

2
r2 ∥H∥2 − 1

2
(T s

11 − T s
22 − · · · − T s

rr)
2

− 2

n∑
s=1

r∑
j=2

(T s
1j)

2 + 6

r∑
α=1

n∑
s=2

(Aα
1s)

2

+

n∑
i=1

r∑
k=1

(g1(TUk
Xi, TUk

Xi)− g1(AXiUk,AXiUk))

− 2δ(N) +

n∑
s=1

r∑
j=1

(g1(TUj
Xs, TUj

Xs)− g1(AXs
Uj ,AXs

Uj))

+ 2
∑

2≤i<j≤r

R̃(Ui, Uj , Uj , Ui) + 2
∑

2≤i<j≤n

R̃(Xi, Xj , Xj , Xi).(76)

Since M̃(c) is a Sasakian space form, we obtain∑
2≤i<j≤r

R̃(Ui, Uj , Uj , Ui) =
(c+ 3)

8
(r − 2)(r − 1)

+
3(c− 1)

8
(r − 2) cos2 θ(77)

and ∑
2≤i<j≤n

R̃(Xi, Xj , Xj , Xi)

=
(c+ 3)

8
(n− 2)(n− 1) +

(c− 1)

4
(−(n− 2)(1− η(X1)

2)

+ 3
∑

2≤i<j≤n

g2(CXi, Xj)).(78)
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From (77), (78) in (76), we derive

(c+ 3)

2
(nr + n+ r − 2) +

(c− 1)

4
[2(2− n)(η(X1))

2 − 2r − 2 + 6(cos2 θ

+ ∥B∥2 + ∥CX1∥2)]

= 2R̂ic(U1) + 2Ric∗(X1) +
1

2
r2 ∥H∥2 − 1

2
(T s

11 − T s
22 − · · · − T s

rr)
2

− 2

n∑
s=1

r∑
j=2

(T s
1j)

2 + 6

r∑
α=1

n∑
s=2

(Aα
1s)

2

+

n∑
i=1

r∑
k=1

(g1(TUk
Xi, TUk

Xi)− g1(AXi
Uk,AXi

Uk))

− 2δ(N) +

n∑
s=1

r∑
j=1

(g1(TUjXs, TUjXs)− g1(AXsUj ,AXsUj))(79)

which gives (74). □

From (62), (65), (67), (68) and (69) we obtain

(c+ 3)

4
(n+ r)(n+ r − 1) +

(c− 1)

4
[2(1− r − n) + 3{(r − 1) cos2 θ

+ 2 ∥B∥2 + ∥C∥2}]

= 2τ̂+2τ∗+r2 ∥H∥2−
∥∥T H∥∥2+3

∥∥AV∥∥2−2δ(N)+2
∥∥T V∥∥2−2

∥∥AH∥∥2 .(80)

From (80) we obtain following theorem.

Theorem 4.12. Let Ψ : M̃(c) →M be a slant Riemannian submersion from a

Sasakian space form (M̃(c), g1) onto a Riemannian manifold (M, g2) such that
ξ is vertical. Then we have

2τ̂ + 2τ∗ ≤ (c+ 3)

4
(n+ r)(n+ r − 1) +

(c− 1)

4
[2(1− r − n)

+ 3{(r − 1) cos2 θ + 2 ∥B∥2 + ∥C∥2}]− r2 ∥H∥2 +
∥∥T H∥∥2

+ 2δ(N)− 2
∥∥T V∥∥2 + 2

∥∥AH∥∥2 ,(81)

2τ̂ + 2τ∗ ≥ (c+ 3)

4
(n+ r)(n+ r − 1) +

(c− 1)

4
[2(1− r − n)

+ 3{(r − 1) cos2 θ + 2 ∥B∥2 + ∥C∥2}]− r2 ∥H∥2 +
∥∥T H∥∥2

− 3
∥∥AV∥∥2 + 2δ(N)− 2

∥∥T V∥∥2 .(82)

Equality cases of (81) and (82) hold for all p ∈ M̃ if and only if horizontal
distribution H is integrable.

From Theorem 4.12, we have the following corollary.
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Corollary 4.13. Let Ψ : M̃(c) →M be a slant Riemannian submersion from

a Sasakian space form (M̃(c), g1) onto a Riemannian manifold (M, g2) such
that ξ is vertical and each fiber is totally geodesic. Then we have

2τ̂ + 2τ∗ ≤ (c+ 3)

4
(n+ r)(n+ r − 1) +

(c− 1)

4
[2(1− r − n)

+ 3{(r − 1) cos2 θ + 2 ∥B∥2 + ∥C∥2}] + 2
∥∥AH∥∥2 ,(83)

2τ̂ + 2τ∗ ≥ (c+ 3)

4
(n+ r)(n+ r − 1) +

(c− 1)

4
[2(1− r − n)

+ 3{(r − 1) cos2 θ + 2 ∥B∥2 + ∥C∥2}]− 3
∥∥AV∥∥2 .(84)

Equality cases of (83) and (84) hold for all p ∈ M̃ if and only if horizontal
distribution H is integrable.

From (80) we obtain following theorem.

Theorem 4.14. Let Ψ : M̃(c) →M be a slant Riemannian submersion from a

Sasakian space form (M̃(c), g1) onto a Riemannian manifold (M, g2) such that
ξ is vertical. Then we have

2τ̂ + 2τ∗ ≥ (c+ 3)

4
(n+ r)(n+ r − 1) +

(c− 1)

4
[2(1− r − n)

+ 3{(r − 1) cos2 θ + 2 ∥B∥2 + ∥C∥2}]− r2 ∥H∥2

+ 2δ(N)− 2
∥∥T V∥∥2 + 2

∥∥AH∥∥2 − 3
∥∥AV∥∥2 ,(85)

2τ̂ + 2τ∗ ≤ (c+ 3)

4
(n+ r)(n+ r − 1) +

(c− 1)

4
[2(1− r − n)

+ 3{(r − 1) cos2 θ + 2 ∥B∥2 + ∥C∥2}]− r2 ∥H∥2

+
∥∥T H∥∥2 + 2δ(N) + 2

∥∥AH∥∥2 − 3
∥∥AV∥∥2 .(86)

Equality cases of (85) and (86) hold for all p ∈ M̃ if and only if the fiber

through p of Ψ is a totally geodesic submanifold of M̃ .

From Theorem 4.14 we get following corollary.

Corollary 4.15. Let Ψ : M̃(c) →M be a slant Riemannian submersion from

a Sasakian space form (M̃(c), g1) onto a Riemannian manifold (M, g2) such
that ξ is vertical and H is integrable. Then we have

2τ̂ + 2τ∗ ≥ (c+ 3)

4
(n+ r)(n+ r − 1) +

(c− 1)

4
[2(1− r − n)

+ 3{(r − 1) cos2 θ + 2 ∥B∥2 + ∥C∥2}]

− r2 ∥H∥2 + 2δ(N)− 2
∥∥T V∥∥2 ,(87)
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2τ̂ + 2τ∗ ≤ (c+ 3)

4
(n+ r)(n+ r − 1) +

(c− 1)

4
[2(1− r − n)

+ 3{(r − 1) cos2 θ + 2 ∥B∥2 + ∥C∥2}]

− r2 ∥H∥2 + 2δ(N) +
∥∥T H∥∥2 .(88)

Equality cases of (87) and (88) hold for all p ∈ M̃ if and only if the fiber

through p of Ψ is a totally geodesic submanifold of M̃ .

Lemma 4.16. Let a and b be non-negative real numbers. Then

a+ b

2
≥

√
ab

with equality if and only if a = b.

Using Lemma 4.16 in (80), we obtain following theorems.

Theorem 4.17. Let Ψ : M̃(c) →M be a slant Riemannian submersion from a

Sasakian space form (M̃(c), g1) onto a Riemannian manifold (M, g2) such that
ξ is vertical. Then we have

(c+ 3)

4
(n+ r)(n+ r − 1) +

(c− 1)

4
[2(1− r − n) + 3{(r − 1) cos2 θ

+ 2 ∥B∥2 + ∥C∥2}]

≤ 2τ̂+2τ∗+r2 ∥H∥2+2
∥∥T V∥∥2+3

∥∥AV∥∥2−2δ(N)− 2
√
2
∥∥AH∥∥∥∥T H∥∥ .(89)

Equality case of (89) holds for all p ∈ M̃ if and only if
∥∥AH

∥∥ =
∥∥T H

∥∥.
Theorem 4.18. Let Ψ : M̃(c) →M be a slant Riemannian submersion from a

Sasakian space form (M̃(c), g1) onto a Riemannian manifold (M, g2) such that
ξ is vertical. Then we have

(c+ 3)

4
(n+ r)(n+ r − 1) +

(c− 1)

4
[2(1− r − n) + 3{(r − 1) cos2 θ

+ 2 ∥B∥2 + ∥C∥2}]

≥ 2τ̂+2τ∗+r2 ∥H∥2−
∥∥T H∥∥2−2δ(N)−2

∥∥AH∥∥2+2
√
6
∥∥AV∥∥∥∥T V∥∥ .(90)

Equality case of (90) holds for all p ∈ M̃ if and only if
∥∥AV

∥∥ =
∥∥T V

∥∥.
Lemma 4.19 ([40]). Let a1, a2, . . . , an be n-real numbers (n > 1). Then

1

n
(

n∑
i=1

ai)
2 ≤

n∑
i=1

a2i

with equality if and only if a1 = a2 = · · · = an.
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Theorem 4.20. Let Ψ : M̃(c) →M be a slant Riemannian submersion from a

Sasakian space form (M̃(c), g1) onto a Riemannian manifold (M, g2) such that
ξ is vertical. Then we have

(c+ 3)

4
(n+ r)(n+ r − 1) +

(c− 1)

4
[2(1− r − n) + 3{(r − 1) cos2 θ

+ 2 ∥B∥2 + ∥C∥2}]

≤ 2τ̂ + 2τ∗ + r(r − 1) ∥H∥2 + 3
∥∥AV∥∥2 − 2δ(N) + 2

∥∥T V∥∥2 − 2
∥∥AH∥∥2 .(91)

Equality case of (91) holds for all p ∈ M̃ if and only if we have the following
statements:

i) Ψ is a Riemannian submersion that has a totally umbilical fiber.
ii) Tij = 0 for i ̸= j ∈ {1, 2, . . . , r}.

Proof. From (80) we have

(c+ 3)

4
(n+ r)(n+ r − 1) +

(c− 1)

4
[2(1− r − n) + 3{(r − 1) cos2 θ

+ 2 ∥B∥2 + ∥C∥2}]

= 2τ̂ + 2τ∗ + r2 ∥H∥2 −
n∑

i=1

r∑
j=1

(T s
jj)

2 −
n∑

i=1

r∑
j ̸=k

(T s
jk)

2

+ 3
∥∥AV∥∥2 − 2δ(N) + 2

∥∥T V∥∥2 − 2
∥∥AH∥∥2 .(92)

Using Lemma 4.19 in (92), we obtain

(c+ 3)

4
(n+ r)(n+ r − 1) +

(c− 1)

4
[2(1− r − n) + 3{(r − 1) cos2 θ

+ 2 ∥B∥2 + ∥C∥2}]

≤ 2τ̂ + 2τ∗ + r2 ∥H∥2 − 1

r

n∑
s=1

(

r∑
j=1

T s
jj)

2 −
n∑

s=1

r∑
j ̸=k

(T s
jk)

2

+ 3
∥∥AV∥∥2 − 2δ(N) + 2

∥∥T V∥∥2 − 2
∥∥AH∥∥2(93)

which is equivalent to (91). Equality case of (91) holds for all p ∈ M̃ if and
only if

T11 = T22 = · · · = Trr and

n∑
s=1

r∑
j ̸=k

(T s
jk)

2 = 0

which completes proof of the theorem. □

Using by similar proof way of Theorem 4.20, we have the following theorem.

Theorem 4.21. Let Ψ : M̃(c) →M be a slant Riemannian submersion from a

Sasakian space form (M̃(c), g1) onto a Riemannian manifold (M, g2) such that
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ξ is vertical. Then we have

(c+ 3)

4
(n+ r)(n+ r − 1) +

(c− 1)

4
[2(1− r − n)

+ 3{(r − 1) cos2 θ + 2 ∥B∥2 + ∥C∥2}]

≥ 2τ̂ + 2τ∗ + r2 ∥H∥2 −
∥∥T H∥∥2 + 3

n
tr(AV)2 − 2δ(N)

+ 2
∥∥T V∥∥2 − 2

∥∥AH∥∥2 .(94)

Equality case of (94) holds for all p ∈ M̃ if and only if A11 = A22 = · · · = Ann

and Aij = 0 for i ̸= j ∈ {1, 2, . . . , n} .

From Theorem 4.21, we get following corollary.

Corollary 4.22. Let Ψ : M̃(c) →M be a slant Riemannian submersion from

a Sasakian space form (M̃(c), g1) onto a Riemannian manifold (M, g2) such
that ξ is vertical and each fiber is totally geodesic. Then we have

(c+ 3)

4
(n+ r)(n+ r − 1) +

(c− 1)

4
[2(1− r − n)

+ 3{(r − 1) cos2 θ + 2 ∥B∥2 + ∥C∥2}]

≥ 2τ̂ + 2τ∗ + r2 ∥H∥2 + 3

n
tr(AV)2 − 2

∥∥AH∥∥2 .(95)

Equality case of (95) holds for all p ∈ M̃ if and only if A11 = A22 = · · · = Ann

and Aij = 0 for i ̸= j ∈ {1, 2, . . . , n} .

5. Examples

Now, we are going to mention some examples for slant Riemannian submer-
sions in the following.

Example 5.1 ([7]). We consider R2n+1 with Cartesian coordinates (xi, yi, z)
(i = 1, 2, . . . , n) and its usual contact form

η =
1

2
(dz −

n∑
i=1

yidxi).

The characteristic vector field is given ξ by 2 ∂
∂z and its Riemannian metric

and tensor field are given by

g =
1

4
η ⊗ η +

n∑
i=1

((dxi)
2 + (dyi)

2), ϕ =

 0 δij 0
−δij 0 0
0 yj 0

 , i = 1, 2, . . . , n.

This gives a contact metric structure on R2n+1. The vector fields Ei = 2 ∂
∂yi

,

En+i = 2( ∂
∂xi

+ yi
∂
∂z ), ξ form a ϕ-basis for the contact metric structure. On

the other hand, it can be shown that R2n+1(ϕ, ξ, η, g1) is a Sasakian manifold.
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Example 5.2. Every invariant Riemannian submersions from Sasakian man-
ifolds onto Riemannian manifolds are slant Riemannian submersions with θ =
{0}.

Example 5.3 ([18, 27]). Every anti-invariant Riemannian submersions from
Sasakian manifolds onto Riemannian manifolds are slant Riemannian submer-
sions with θ = {π

2 }.

A slant Riemannian submersion, which is neither invariant nor anti-invariant,
is called a proper slant Riemannian submersion. In the following example, the
characteristic vector field ξ is a vertical vector field.

Example 5.4. R5 has got a Sasakian structure as in Example 5.1. Let Ψ :
R5 → R2 be a map defined by Ψ(x1, y1, x2, y2, z) = (− 1

4x1+
1√
5
y1+

1
4x2,−

1
4x1+

1
2
√
5
y1 +

1
4x2). Then, by direct calculations we derives

kerΨ∗ = span{V1 =
E3 + E4√

2
, V2 = E2, V3 = ξ = E5}

and

(kerΨ∗)
⊥ = span{H1 =

−E3 + E4√
2

, H2 = E1}.

Then it is easy to see that Ψ is a Riemannian submersion. Moreover, ϕV1 =
−E1−E2√

2
and ϕV2 = E4 imply that |g1(ϕV1, V2)| = 1√

2
. So Ψ is a slant sub-

mersion with slant angle θ = π
4 . We derive immediately that fibers of the

submersions are totally geodesic and the horizontal distribution is integrable.
Hence, we have again that Ψ satisfies the equality case of the inequalities stated
in Theorems 4.1, 4.2, 4.3, 4.6 and 4.7.

Now, we construct a non-trivial example of slant submersion from a Sasakian
manifold with the characteristic vector field ξ is a horizontal vector field. Let
(R5, g, ϕ, ξ, η) denote the manifold R5 with the structure given by

ϕ(X1, X2, X3, X4, Z) = (−X2, X1,−X4, X3,
√
2x1X2 + x2X1),

g = η ⊗ η +
1

4

4∑
i=1

(dxi ⊗ dxi),

η =
1

2
(dz −

√
2x1dx1 − x2dx2), ξ = 2

∂

∂z
,

where (x1, x2, x3, x4, z) are the Cartesian coordinates. We will use this notation
in the following example.

Example 5.5. Let F be a submersion defined by

F : R5 −→ R3

(x1, x2, x3, x4, z) (−x1+x3
√
2

, x4, (−x1)2√
2

− (x2)2

2 + z).
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Then it follows that

kerF∗ = span{Z1 =
1√
2

∂

∂x1
+

1√
2

∂

∂x3
+ x1

∂

∂z
, Z2 =

∂

∂x2
+ x2

∂

∂z
}

and

(kerF∗)
⊥ = span{H1 = − 1√

2

∂

∂x1
+

1√
2

∂

∂x3
, H2 =

∂

∂x4
, H3 = ξ = 2

∂

∂z
}.

A straight computations, F is a slant submersion with slant angle θ = π
4 . Also

by direct computations, we obtain

g2(F∗H1, F∗H1) = g1(H1, H1),

g2(F∗H2, F∗H2) = g1(H2, H2),

g2(F∗ξ, F∗ξ) = g1(ξ, ξ),

where g1 = η ⊗ η + 1
4

∑4
i=1(dx

i ⊗ dxi) and g2 = 1
4

∑4
i=1(dx

i ⊗ dxi) denote the

inner products of R5 and R3. As a result, F is a slant Riemannian submersion.
We derive immediately that the horizontal distribution is integrable. Hence, we
have again that F satisfies the equality case of the inequality stated in Theorem
4.5.
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[21] M. Gülbahar, S. Eken Meriç, and E. Kılıç, Sharp inequalities involving the Ricci cur-
vature for Riemannian submersions, Kragujevac J. Math. 41 (2017), no. 2, 279–293.

https://doi.org/10.5937/kgjmath1702279g
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[35] B. Şahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds,

Cent. Eur. J. Math. 8 (2010), no. 3, 437–447. https://doi.org/10.2478/s11533-010-

0023-6
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[37] B. Şahin, Chen’s first inequality for Riemannian maps, Ann. Polon. Math. 117 (2016),
no. 3, 249–258. https://doi.org/10.4064/ap3958-7-2016
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