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SPECTRAL INSTABILITY OF ROLLS

IN THE 2-DIMENSIONAL GENERALIZED

SWIFT-HOHENBERG EQUATION

Myeongju Chae and Soyeun Jung

Abstract. The aim of this paper is to investigate the spectral insta-
bility of roll waves bifurcating from an equilibrium in the 2-dimensional

generalized Swift-Hohenberg equation. We characterize unstable Bloch

wave vectors to prove that the rolls are spectrally unstable in the whole
parameter region where the rolls exist, while they are Eckhaus stable in

1 dimension [13]. As compared to [18], showing that the stability of the
rolls in the 2-dimensional Swift-Hohenberg equation without a quadratic

nonlinearity is determined by Eckhaus and zigzag curves, our result says

that the quadratic nonlinearity of the equation is the cause of such insta-
bility of the rolls.

1. Introduction

This paper deals with the 2-dimensional generalized Swift-Hohenberg equa-
tion (gSHE) with quadratic-cubic nonlinearity

(1) ∂tu = −(1 + ∂2
x + ∂2

y)
2u+ ε2u+ bu2 − su3, t ≥ 0, (x, y) ∈ R2, u ∈ R1,

where ε ∈ R1 is a bifurcation parameter, and b and s are nonzero constants.
In our analysis we treat only ε as a control parameter. There are several
types of Swift-Hohenberg equations depending upon the nonlinearity, and they
serve models for pattern formation such as stripes, squares, and hexagons,
etc. For example, see [1, 4, 6, 7, 10, 15, 16, 20–22, 24] and the references therein
for numerical and analytical studies of various types of solutions in 2 space
dimensions.

In the present paper we are interested in the stability of bifurcating sta-
tionary periodic patterns urolls(t, x, y) = ũ(x) which are periodic in x and
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independent of y, called “rolls” or “stripes”. The existence of bifurcating rolls
can be considered from the instability of a constant solution u ≡ 0. Indeed,
the linearization of (1) about u ≡ 0, that is, seeking a solution v(t, x, y) =
eλ(k,l)t+i(kx+ly) for (1) gives λ(k, l) = −(1−k2− l2)2+ε2 which is zero at ε = 0
corresponding to the weakly unstable wave vectors (k, l) with k2+ l2 = 1. This
is often referred to as the weak instability of the homogeneous state u ≡ 0 [17].
Under the assumption that the rolls depend only upon x-variable, i.e., l = 0,
one can readily expect small amplitude roll solutions of the form

(2) ũ(x) ≈ εei(1+εω)x +O(ε2) + c.c.

bifurcating from u ≡ 0 in a neighborhood (ε, k2) = (0, 1). Here, c.c. denotes the
complex conjugate, and ω defined in (5) is a parameter related to k satisfying
k2 = 1 at ω = 0. That is, the roll solutions grow smoothly in amplitude as the
control parameter ε increases from 0.

Such roll solutions (2) were constructed rigorously in [13] for b = 1 and
s = 2, studying the existence and stability of the bifurcating periodic solution
in the 1-dimensional gSHE. Its existence result in [13] is also valid for the
2-dimensional case (1) with 27s − 38b2 > 0 (see Theorem 1.1 below), but
the stability is quite different because the perturbations in our case depend
upon both spatial variables x and y. Our purpose of this paper is to study
how perturbations including transverse direction affect the spectral stability
or instability of the rolls. More precisely, observing rigorously the Bloch wave
vectors σ ∈ R2 that generate unstable modes of the linearized operator of
(1) about the rolls, we prove that for sufficiently small ε > 0 the rolls are
spectrally unstable for all wave numbers k where the rolls exist. In addition,
we will show how the spectral instability leads to linear instability of the rolls
under a localized initial perturbation. However, this is contrary to the stability
result for the 1-dimensional case. It has been proved in [13] that the bifurcating
periodic solutions ũ in the 1-dimensional gSHE are Eckhaus stable, i.e., stable
for the certain range of parameters (ε, k).

Our instability result is also contrary to the one for the case b = 0 in (1).
According to [17,18], as considered primary and foremost works for the study of
stability of periodic patterns, there is a positive ε1 such that the roll solutions
with ε ∈ (0, ε1] and |k2 − 1| ≤ ε are stable if and only if

(3)
ε ≥ EE(k) := 3(k2 − 1)2 +O((k2 − 1)3) and

k2 − 1 ≥ KZ(ε) := −ε4/512 +O(ε6).
1

By the standard Floquet-Bloch theory, the spectra of the linear operator
with spatially periodic coefficients are all essential spectra that are described
as the continuous union of discrete eigenvalues of the Bloch operators for all
wave vectors σ ∈ R2 (see the spectral identity (40)). In fact, if b = 0, the

1The first bound ε ≥ EE(k) is called the Eckhaus criterion ([8,25]) and the second bound

k2 − 1 ≥ KZ(ε) is the zigzag instability bound ([2, 21]).
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criteria for the stability and instability (3) were determined by observing the
eigenvalues of the Bloch operator for the most unstable modes σ ≈ (2, 0). Of
course, even if b ̸= 0 in our case, we can also find such criteria for the instability
by investigating wave vectors σ ∈ R2 near (0, 0) which corresponds to (2, 0) in
[18] (see Section 4). However, the nonzero quadratic nonlinearity gives other

unstable wave vectors near σ∗ := (− 1
2 ,

√
3
2 ) that cause the spectral instability

for small ε > 0 and all k in which the rolls exist.
The paper is organized as follows. In the remaining part of the introduction,

we state the existence result of the rolls established in [13], and provide the main
result showing the spectral instability of the rolls. We also discuss the work of
interest in the future. In Section 2 we briefly repeat the existence result in [13]
how we can apply the Lyapunov-Schmidt reduction to construct the bifurcating
roll solutions for general b and s. In Section 3 we discuss the Bloch operators
and identify several regions of the Bloch wave vectors σ ∈ R2 that may be
unstable. We follow the mathematical framework developed in [18] to verify
how the quadratic nonlinearity affects the instability. In particular, we again
apply the Lyapunov-Schmidt reduction to the eigenvalue problem of the Bloch

operators for unstable modes σ near σ∗ = (− 1
2 ,

√
3
2 ). After the study of spectral

instability we will construct an exponentially growing solution of the linearized
equation of (1) arising from the unstable modes near σ∗. Lastly, Section 4
provides further discussion of unstable wave vectors of the Bloch operators for
other regions. However, this section is not required to demonstrate our main
result, so the reader may consider Section 4 as an appendix.

1.1. Main results

We first state the existence result about the roll solutions of (1). Making a
coordinate change x → ξ := kx, where k is a wave number, the roll solutions
urolls(t, x, y) = ũ(ξ) with period 2π satisfy

(4) 0 = −(1 + k2∂2
ξ )

2u+ ε2u+ bu2 − su3, t ≥ 0, u ∈ R1.

The periodic solutions ũ(ξ) were constructed in [13] only for b = 1 and s = 2.
However, its analysis is valid also for all b and s with 27s − 38b2 > 0 without
any difficulty. We briefly repeat the proof in Section 2.

Theorem 1.1 (Existence, [13]). Assume 27s− 38b2 > 0 and let ω be a param-
eter satisfying

(5) k2 − 1 = 2εω.

Then there exists an ε0 > 0 such that for all ε ∈ (0, ε0] and all ω ∈ [− 1
2 ,

1
2 ]

there is a unique (up to translation) stationary 2π-periodic solution ũε,ω(ξ) ∈
H4

per([0, 2π]) of (4), which is even in ξ and bifurcating from the uniform state
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u ≡ 0. These periodic solutions have the following expansion

ũε,ω(ξ) = ε
6
√
1− 4ω2

√
27s− 38b2

cos ξ

+ ε2
[18b(1− 4ω2)

27s− 38b2
− 32b2ω

√
1− 4ω2

(27s− 38b2)
√
27s− 38b2

cos ξ

+
2b(1− 4ω2)

27s− 38b2
cos 2ξ

]
+O(ε3).

(6)

In particular, if ω = ± 1
2 , then ũε,ω(ξ) ≡ 0.

Remark 1.2. Following [13,23], the parameter ω defined in (5) is used through-
out the paper rather than k. This is to organize the bifurcation equations as
the asymptotic expansions in terms of ε when applying the Lyapunov-Schmidt
reduction. We notice that the parameter region ω ∈ [− 1

2 ,
1
2 ] where the periodic

solutions exist can be rephrased as k2 ∈ [1− ε, 1 + ε], which is consistent with
the one of the existence result in [17, 18]. In addition, the number “2” in (5)
is not necessary, but this scaling is very natural in the derivation of the formal
Ginzberg-Landau amplitude equation of gSHE (see [13, Section 2.4] for the
derivation of gSHE).

In order to state the result of spectral instability of the rolls ũε,ω(ξ) in 2-
dimensional space, we linearize the equation (4) about ũε,ω(ξ) to obtain

(7) Lε,ω := −(1 + (1 + 2εω)∂2
ξ + ∂2

y)
2 + (ε2 + 2bũε,ω − 3sũ2

ε,ω)

acting on L2(R2) with densely defined domain H4(R2). It is well known that
the L2(R2)-spectra of Lε,ω having spatially periodic coefficients are all essen-
tial spectra. Moreover, the spectra can be characterized by the L2([0, 2π])-
eigenvalues of the Bloch operator family given by

B(ε, ω, σ) := −(1 + (1 + 2εω)(∂ξ + iσ1)
2 − σ2

2)
2 + (ε2 + 2bũε,ω − 3sũ2

ε,ω)(8)

for all σ = (σ1, σ2) ∈ [− 1
2 , 0]× [0,∞) which are called the Bloch wave vector. A

detailed discussion about the Bloch operators is given in Section 3. Through-
out this paper, following [18], Sε,ω denotes the set of all unstable Bloch wave
vectors, i.e., the set of all σ ∈ R2 for which B(ε, ω, σ) has a positive eigen-
value. We notice that B(ε, ω, σ) has only real-valued eigenvalues because of its
self-adjointness. We are ready to state our main result.

Theorem 1.3 (Spectral instability). Assume 27s − 38b2 > 0 and b ̸= 0. Let
ε0 be taken from the existence result of ũε,ω in Theorem 1.1. Then there exists
ε̃0 ∈ (0, ε0] such that ũε,ω(ξ) is spectrally unstable for all ε ∈ (0, ε̃0] and all
ω ∈ [− 1

2 ,
1
2 ]. In particular, for any fixed r > 1,

{σ ∈ R2 | |σ − σ∗| ≤ O(εr)} ⊂ Sε,ω for all ω ∈ [− 1
2 ,

1
2 ],

where σ∗ := (− 1
2 ,

√
3
2 ) ∈ R2.
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The proof of Theorem 1.3 is given in Section 3. The spectral problem λv =
Lε,ωv on L2(R2) is formally obtained by plugging ṽ(t, ξ, y) = eλtv(ξ, y) into the
linear perturbation equation ṽt = Lε,ω ṽ. However, by the standard Floquet-
Bloch analysis, there is no v(ξ, y) lies in L2(R2), so that the spectrum of Lε,ω

must be entirely essential spectrum. Thus, the form of solutions v(ξ, y) that
grow exponentially at the linear level corresponding to the positive spectrum λ
is not so explicit. For this reason, we provide an exponentially growing solution
arising from the unstable mode σ∗ in Section 3.3.

Remark 1.4.
1. It has been studied in [13] that the periodic solutions ũε,ω(ξ) in one di-

mension, i.e., σ2 = 0, are unstable when ω ∈ [− 1
2 ,−

1
2
√
3
)∪ ( 1

2
√
3
, 1
2 ], while they

are stable when ω ∈ (− 1
2
√
3
, 1
2
√
3
). It is said to be Eckhaus stable, which con-

tains the universal factor
√
3 as compared to the existence result ω ∈ [− 1

2 ,
1
2 ].

Thus, our instability result for ω ∈ (− 1
2
√
3
, 1
2
√
3
) means the transverse instabil-

ity in the sense that the transverse direction σ2 ̸= 0 affects the instability of
the rolls.

2. The unstable mode σ∗ = (− 1
2 ,

√
3
2 ) is determined by two small eigenvalues

of B(0, ω, σ), saying

µ0(σ) = −(1− σ2
1 − σ2

2)
2 and µ1(σ) = −(1− (1 + σ1)

2 − σ2
2)

2.

That is, both eigenvalues µ0(σ) and µ1(σ) are zero at σ∗. The technique
of Lyapunov-Schmidt reduction allows us to investigate the eigenvalues near
zero of B(ε, ω, σ) for ε > 0 sufficiently small and σ ≈ σ∗. In particular, the
quadratic nonlinearity (i.e., b ̸= 0) causes B(ε, ω, σ) to have at least one positive
eigenvalue even for ω ∈ (− 1

2
√
3
, 1
2
√
3
). This unstable mode does not appear in

[17, 18] dealing with b = 0, and the rolls are stable for the parameter region
(3).

3. We notice that the coefficients b and s in (1) do not affect the instability
result of Theorem 1.3 as long as 27s− 38b2 > 0 and b ̸= 0. This is due to the
fact that the result is solely based on the unstable modes near σ∗. The signs of
eigenvalues of the Bloch operators B(ε, ω, σ) for some other modes σ ∈ R2 may
vary depending upon b and s. For example, σ = (0, 1) ∈ Sε,ω for all ω ∈ [− 1

2 ,
1
2 ]

only if 38
27b

2 < s ≤ 70
27b

2. A detailed description of Sε,ω will be given in Section
4 as an appendix.

1.2. Discussion

In Section 3.3 we show that the spectral instability of Theorem 1.3 leads
to linear instability by constructing an exponentially growing solution of the
linearized equation of (1). It would be interesting to see that the solution
at the linear level truly causes nonlinear instability. In particular, Theorem
1.3 exhibits the rolls are spectrally unstable in the whole parameter range of
ω extending its unstable range from ω ∈ [− 1

2 ,−
1

2
√
3
) ∪ ( 1

2
√
3
, 1
2 ] to [− 1

2 ,
1
2 ] as
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compared to 1-dimensional gSHE ([13, Theorem 1.2]). We address the trans-
verse nonlinear instability of the roll solutions in the forthcoming work [3] with
references [9, 11, 19]. Nonlinear modulational instability under localized per-
turbations around periodic traveling solutions was studied by Jin et al. [11]
for several dispersive equations in one dimension. For the 2-dimensional case
Rousset and Tzvekov established nonlinear instability of the line solitary waver-
waves with respect to transverse perturbations [19]. The framework of [11] and
[19] was partly initiated by the work of Grenier [9].

In previous work, Jung has studied the diffusive stability of bifurcating sta-
tionary periodic solutions in the 1-dimensional Brusselator model [23], a typical
system for Turing instability. In fact, the present paper follows several compu-
tational techniques laid out in [23]. The study of stability or instability of the
rolls in the 2-dimensional Brusselator model would also be interesting direction
for future study.

2. Rolls bifurcating from a uniform state

In this section we briefly review the construction of roll solutions ũ(ξ) es-
tablished in [13]. As mentioned in the introduction, the problem for ũ(ξ) reads

(9) 0 = N(ε, k, ũ) := −(1 + k2∂2
ξ )

2ũ+ ε2ũ+ bũ2 − sũ3,

where N : R2×H4
per([0, 2π]) → L2

per([0, 2π]) is an analytic mapping. Through-

out the paper, L2
per([0, 2π]) (resp. H

4
per([0, 2π])) denotes the class of L2 (resp.

H4) periodic functions on [0, 2π]. We notice that N(0,±1, 0) = 0 because the
instability of u ≡ 0 occurs at ε = 0 with the wave number k2 = 1. Thus, it is
natural to look for 2π-periodic solutions ũ(ξ) satisfying (9) in a neighborhood
of (ε, k, ũ) = (0,±1, 0). Such bifurcating periodic solutions can be constructed
by the Lyapunov-Schmidt reduction.

2.1. Lyapunov-Schmidt reduction for (9) and the bifurcation equa-
tion

The advantage of the Lyapunov-Schmidt reduction is that an infinite dimen-
sional problem (9) solving for ũ ∈ H4

per([0, 2π]) can be reduced to an appro-
priate finite dimensional problem which is equivalent to (9). In order to solve
the equation (9) in a neighborhood of (0,±1, 0), we linearize N(ε, k, ũ) about
(ε, k, ũ) = (0,±1, 0) to obtain the linear operator

(10) L := ∂ũN(0,±1, 0) = −(1 + ∂2
ξ )

2,

where L : H4
per([0, 2π]) ⊂ L2

per([0, 2π]) → L2
per([0, 2π]) is a Fredholm operator.

Then its kernel, denoted by ker(L), is spanned by

(11) U1(ξ) = cos ξ and U2(ξ) = sin ξ,

and thus the linear operator L is not invertible. In order to apply the Lyapunov-
Schmidt reduction we consider the orthogonal projection of L onto the kernel
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of L

P : L2
per([0, 2π]) → ker(L)

defined by

(12) Pu :=
1

π

∫ 2π

0

uU1 dξU1 +
1

π

∫ 2π

0

uU2 dξU2,

which can also be defined as a vector form

(13) P̃ u :=
1

π

(∫ 2π

0

uU1 dξ,

∫ 2π

0

uU2 dξ
)T

∈ R2.

Since L is self-adjoint and a Fredholm operator of index zero, PL2
per([0, 2π]) =

ker(L) and (I − P )L2
per([0, 2π]) = ran(L). Here ran(L) denotes the range of

L.
We now solve the equation (9) by decomposing ũ ∈ H4

per([0, 2π]) into U+V ,
where U = Pũ = α1U1 + α2U2 ∈ ker(L) for α1, α2 ∈ R and V = (I − P )ũ.
Then one can rewrite the equation (9) into two equations:

0 = P̃N(ε, k, α1U1 + α2U2 + V ),

0 = (I − P )N(ε, k, α1U1 + α2U2 + V ).
(14)

We first focus on the second equation of (14). While the linear operator L on
H4

per([0, 2π]) is not invertible, the operator (I − P )L = (I − P )∂ũN(0,±1, 0)

is invertible between (I − P )H4
per([0, 2π]) and ran(L) = (I − P )L2

per([0, 2π]).
Thus, by the Implicit Function Theorem the second equation of (14) can be
uniquely solved for V = V (ε, k, U) in a neighborhood of (ε, k, U) = (0,±1, 0).

We then substitute V = V (ε, k, U) into the first equation of (14) to obtain
the vector equation

(15) 0 = f(ε, k, α1, α2) := P̃N(ε, k, α1U1 + α2U2 + V (ε, k, U)) ∈ R2.

This is frequently referred to as the bifurcation equation (or the reduced equa-
tion) for (9), which is the 2-dimensional problem equivalent to (9). That is, by
solving the bifurcation equation (15) for small α1 and α2 in a neighborhood of
(ε, k) = (0,±1) one can characterize all small solutions

(16) ũ(ξ) = α1U1 + α2U2 + V (ε, k, α1U1 + α2U2)

bifurcating from u ≡ 0 in a neighborhood of (ε, k, α1, α2) = (0,±1, 0, 0). How-
ever, as discussed in [13, 17, 23], the bifurcation equation (15) has a special
form

(17) 0 = f̃(ε, k, α1, α2)α

for a scalar function f̃(ε, k, α1, α2), i.e., the product of a scalar function and
a vector α = (α1, α2)

T . This is due to the fact that the original differential
equation (9) is translation invariant (ξ 7→ ξ + η) and reflection symmetric
(ξ 7→ −ξ). More precisely, by the identities

(U1, U2)(ξ + η) = (cos ηU1(ξ)− sin ηU2(ξ), sin ηU1(ξ) + cos ηU2(ξ))
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and

(U1, U2)(−ξ) = (U1,−U2)(ξ),

the bifurcation equation is also invariant under the symmetries

α 7→ R(η)α :=

(
cos η − sin η
sin η cos η

)
α and α 7→ Sα :=

(
1 0
0 −1

)
α,

which lead to

f(ε, k,R(η)α) = R(η)f(ε, k, α) and f(ε, k, Sα) = Sf(ε, k, α).

These symmetries yield the form (17). In our case, for computational conve-

nience, we set α2 = 0, and thus solve f̃(ε, k, α1) = 0 for α1.

2.2. Solving the second equation of (14)

As a starting point, we solve the second equation of (14) with α2 = 0 for V
in a neighborhood of (ε, k, α1) = (0,±1, 0). Inserting α2 = 0 into the second
equation of (14) gives

(18)

0 = (I − P )N(ε, k, α1U1 + V )

= (I − P )(ε2 − (1 + k2∂2
ξ )

2)(α1U1 + V ) + b(I − P )(α1U1 + V )2

− s(I − P )(α1U1 + V )3

= (ε2 − (1 + k2∂2
ξ )

2)V + b(I − P )(α1U1 + V )2

− s(I − P )(α1U1 + V )3.

Here, we have used the fact that both PL2
per([0, 2π]) and (I − P )L2

per([0, 2π])

are invariant under the linear operator ε2 − (1 + k2∂2
ξ )

2. In what follows we
will find the asymptotic expansion of V with respect to α1. First, we see
immediately from (18) that

V = V (ε, k, α1) = O(α2
1)

for α1 → 0. Indeed, recalling that ũ(ξ) bifurcates from u ≡ 0, we can verify by
direct calculation that

(19) V (ε, k, 0) = 0 and ∂α1V (ε, k, 0) = 0.

In order to obtain the leading order term, we take the second derivative of (18)
with respect to α1 and put α1 = 0. Using (19) we obtain

0 = (I − P )(ε2 − (1 + k2∂2
ξ )

2)∂2
α1
V |α1=0 + 2b(I − P )U2

1

= (ε2 − (1 + k2∂2
ξ )

2)∂2
α1
V |α1=0 + b(1 + cos 2ξ).

(20)

Since (I−P )L2
per([0, 2π]) is invariant under the linear operator ε

2−(1+k2∂2
ξ )

2,
the leading order term takes the form

(21) ∂2
α1
V |α1=0 = c1 + c2 cos 2ξ
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for some c1(ε, k) and c2(ε, k) ∈ R. The constants c1 and c2 are determined by
inserting (21) into (20)

−b− b cos 2ξ = (ε2 − (1 + k2∂2
ξ )

2)(c1 + c2 cos 2ξ)

= (ε2 − 1)c1 + (ε2 − (1− 4k2)2)c2 cos 2ξ;
(22)

thus we arrive at

(23) c1 =
b

1− ε2
and c2 =

b

(1− 4k2)2 − ε2
.

Next, we take the third derivative of (18) and plug α1 = 0 to obtain
∂3
α1
V |α1=0. Due to (19) and (21),

0 = (I − P )(ε2 − (1 + k2∂2
ξ )

2)∂3
α1
V |α1=0 + 6b(I − P )[U1(c1 + c2 cos 2ξ)]

− 6s(I − P )[U3
1 ]

= (I − P )(ε2 − (1 + k2∂2
ξ )

2)∂3
α1
V |α1=0 + (3bc2 −

3

2
s) cos 3ξ.

(24)

It leads to the form

(25) ∂3
α1
V |α1=0 = c3 cos 3ξ

for some c3(ε, k) ∈ R. We can also determine c3 by plugging (25) into (24),
but it is not necessary to obtain the bifurcation equation.

Consequently, the equation (18) can be solved locally for V :

(26) V (ε, k, α1) =
1

2
α2
1(c1 + c2 cos 2ξ) +

1

6
α3
1c3 cos 3ξ +O(α4

1)

in a neighborhood of (ε, k, α1) = (0,±1, 0).

2.3. The bifurcation equation for (9)

We now find the bifurcation equation (17) by solving the first equation of
(14). Under the projection P it follows that

(27)
PN(ε, k, α1U1 + V )

= (ε2 − (1− k2)2)α1U1 + bP (α1U1 + V )2 − sP (α1U1 + V )3.

By inserting (26) into (27), the last two terms on the right-hand side of (27)
are handled as

bP (α1U1+V )2 = bα2
1P [U2

1 ]+2bα1P [U1V ]+bP [V 2] = b(c1+
1

2
c2)α

3
1U1+O(α5

1)

and

−sP [(α1U1 + V )3] = −sα3
1P [U3

1 ]−
3

2
sα2

1P [α2
1(c1 + c2 cos 2ξ) cos

2 ξ] +O(α5
1)

= −3

4
sα3

1U1 +O(α5
1).

We conclude that the bifurcation equation with α2 = 0 is

(28) 0 = f̃(ε, k, α1)α1,
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where

(29) f̃(ε, k, α1) = ε2 − (1− k2)2 +
(
b(c1 +

1

2
c2)−

3

4
s
)
α2
1 +O(α4

1).

Indeed, we readily see from direct computation that the bifurcation equation
(17) in α-vector form can be written as replacing α1 in (29) by |α|.

Proof of Theorem 1.1. We now solve (29) for α1 → 0 with respect to ε and k
in a neighborhood of (ε, k) = (0,±1). First, we set

(30) A =
ε2 − (1− k2)2

3
4s− b(c1 +

1
2c2)

=
ε2 − (1− k2)2

3
4s− b( b

1−ε2 + b
2(1−4k2)2−2ε2 )

,

and then the equation f̃(ε, k, α1) = 0 becomes

(31) A− α2
1 +O(α4

1) = 0.

It follows immediately that (31) is solvable for small α1 if and only if A ≥ 0.

Indeed, by plugging α1 =
√
AB into (31), we see that a positive solution of

(31) has the form

α1 =
√
A+O(|A|3/2).

Let us introduce a new parameter ω defined by

(32) k2 − 1 = 2ωε.

This scaling is very natural from the Ginzburg-Landau derivation of (1) (see
[13, Section 2.4]). Using this scaling (32) we arrive at

(33) A =
36

27s− 38b2
ε2(1− 4ω2)

[
1− 32b2

3(27s− 38b2)
ωε+O(ε2)

]
for small ε > 0. This leads to the assumption of b and s for the existence of
the roll solutions

(34) 27s− 38b2 > 0, i.e., s >
38

27
b2,

so that A ≥ 0 if and only if 4ω2 ≤ 1, i.e., ω ∈ [− 1
2 ,

1
2 ]. Here we notice that

A = 0 when ω2 = 1
4 . In conclusion, there is an ε0 > 0 such that for all

ε ∈ (0, ε0] and all ω ∈ [− 1
2 ,

1
2 ] a unique positive small solution of (31) exists as

α1 =
6√

27s− 38b2
ε
√

1− 4ω2− 32b2

(27s− 38b2)
√
27s− 38b2

ωε2
√
1− 4ω2+O(ε3).

Plugging this expansion into (26) yields

V (ε, ω, α1) =
18b

27s− 38b2
(1 +

1

9
cos 2ξ)ε2(1− 4ω2) +O(ε3).

Consequently, it follows from (16) that all small solutions ũε,ω(ξ) (up to transla-
tion) of (9) bifurcating from u ≡ 0 have the expansion (6) for all ε ∈ (0, ε0] and
all ω ∈ [− 1

2 ,
1
2 ]. In particular, ũε,ω(ξ) ≡ 0 when ω = ± 1

2 because A = 0. □
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3. Instability of the roll solutions

In this section we study the spectral instability of the rolls ũε,ω(ξ). Recalling
ξ = kx and (32), the generalized Swift-Hohenberg equation (1) can be written
as

(35) ∂tu = −(1 + (1 + 2εω)∂2
ξ + ∂2

y)
2u+ ε2u+ bu2 − su3.

The main purpose of this section is to prove that ũε,ω(ξ) is spectrally unstable
under the perturbations which depend upon both spatial variables ξ and y (i.e.,
the transverse direction). To begin, we linearize (35) about ũε,ω(ξ) described
in (6)

(36) ∂tṽ = Lε,ω ṽ := −(1+(1+2εω)∂2
ξ +∂2

y)
2ṽ+F(ũε,ω)ṽ, ṽ = ṽ(t, ξ, y) ∈ C

acting on L2(R2;C) with densely defined domain H4(R2;C), where
F(ũε,ω)

= ε
12b

√
1− 4ω2

√
27s− 38b2

cos ξ

+ ε2
[
1− 54s− 36b2

27s− 38b2
(1− 4ω2)− 64b3ω

√
1− 4ω2

(27s− 38b2)
√
27s− 38b2

cos ξ

− 54s− 4b2

27s− 38b2
(1− 4ω2) cos 2ξ

]
+O(ε3).

(37)

Here, we emphasize that the linear operator Lε,ω is defined on the whole space
R2, not on the periodic domain. In order to study of the spectrum of Lε,ω, our
starting point is to discuss the family of Bloch operators which is necessary for
studying spectral problems of linear differential operators with spatially peri-
odic coefficients. We can definitely extend the Bloch operator family defined
in one dimension [13,23] to the multi-dimensional case discussed in [12,18].

3.1. Bloch operators

Since the roll solutions ũε,ω(ξ) are 2π-periodic in ξ and independent of y,
every coefficient of the linear operator Lε,ω is also 2π-periodic in ξ, while it
has constant coefficients in terms of y. By the standard Floquet-Bloch theory
([12,14,18]), any bounded eigenfunction v(ξ, y) of Lε,ω takes the form

(38) v(ξ, y) = ei(σ1ξ+σ2y)W (ξ, σ, λ), W (ξ + 2π, σ, λ) = W (ξ, σ, λ),

where σ := (σ1, σ2) ∈ R2 are Floquet exponents, which we will refer to as
Bloch wave vectors throughout this paper. Here we remark that W depends
only upon the ξ-variable and is 2π-periodic. Thus, we readily from (38) see
that the linear operator Lε,ω has no point spectrum, that is, the spectrum
must be entirely essential spectrum. Moreover, it is a well-known fact that
these continuous spectra can be described as the closure of continuous union of
all eigenvalues of the Bloch operators defined in (39). This fact motivates the
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use of the Bloch operators to the study of stability of spatially periodic or roll
solutions. The interested reader can consult [14, Section 3.3] and [18, Section
2] for the general theory of Bloch analysis.

By substituting (38) into the right-hand side of (36) we define the σ-depend-
ent operators B(ε, ω, σ), called the Bloch operator family: for σ = (σ1, σ2) ∈
R2,

B(ε, ω, σ)W := −(1 + (1 + 2εω)(∂ξ + iσ1)
2 − σ2

2)
2W + F(ũε,ω)W(39)

acting on L2
per([0, 2π]) with densely defined domain H4

per([0, 2π]). We notice

that for each σ ∈ R2, the L2
per([0, 2π])-spectrum of B(ε, ω, σ) on the compact

domain [0, 2π] is entirely discrete, i.e., point spectrum. As mentioned in the
above paragraph, the L2(R2)-spectra of Lε,ω can be characterized by

(40) SpecL2(R2)(Lε,ω) = closure
( ⋃

σ∈R2

SpecL2
per([0,2π])

(B(ε, ω, σ))
)

(see [18, Section 2] for the proof of this spectral identity). However, we do not
need to consider the Bloch operators for all σ ∈ R2 in (40). First, B(ε, ω, σ)
is even in σ2 ∈ R and any σ1 ∈ R can be written as σ1 = σ∗ + m for some
σ∗ ∈ [− 1

2 ,
1
2 ) andm ∈ Z; so thatW (ξ, λ) in (38) can be replaced by eimξW (ξ, λ)

which is also 2π-periodic. In addition, the Bloch operators B(ε, ω, σ) have the
following two reflection symmetries

(41) (R1W )(ξ) = W (−ξ) and (R2W )(ξ) = W (ξ)

satisfying B(ε, ω, σ1, σ2) = RjB(ε, ω,−σ1, σ2)Rj for j = 1, 2. Here, the overbar
denotes complex conjugation. Consequently, in the spectral identity (40), it is
enough to investigate the eigenvalue problems of B(ε, ω, σ) on L2

per([0, 2π])

(42) 0 = [B(ε, ω, σ)− λ]W

only for all σ ∈ [− 1
2 , 0] × [0,∞) rather than all σ ∈ R2. For our purpose in

this section, noting that B(ε, ω, σ) is a self-adjoint operator, we will verify that
there is a positive eigenvalue λ of B(ε, ω, σ) for some σ ∈ [− 1

2 , 0]× [0,∞) which
are referred to as unstable Bloch wave vectors. We denote the collection of
unstable Bloch wave vectors by Sε,ω.

To characterize such unstable Bloch wave vectors σ ∈ Sε,ω ⊂ [− 1
2 , 0] ×

[0,∞), let us first solve the eigenvalue problem (42) at the critical point ε = 0.
Since the bifurcation parameter ε is sufficiently small bifurcating from 0, the
operators B(ε, ω, σ) can be considered as small perturbations of

(43) B(0, ω, σ) = −(1 + (∂ξ + iσ1)
2 − σ2

2)
2.

Since it has constant coefficients, its eigenvalue problem can be solved imme-
diately as

(44) B(0, ω, σ)ϕm = µm(σ)ϕm,
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in which ϕm(ξ) := eimξ with m ∈ Z and the eigenvalues µm(σ) are given by

µm(σ) = −(1− (m+ σ1)
2 − σ2

2)
2 ≤ 0.

It follows that µm(σ) = 0 if and only if (m+σ1)
2+σ2

2 = 1. Therefore, unstable
wave vectors σ, if they exist, will appear when (m+ σ1)

2 + σ2
2 ≈ 1. Otherwise,

that is, if (m + σ1)
2 + σ2

2 is away from 1, the eigenvalues µm(σ) will have
negative upper bound, and thus the eigenvalues of B(ε, ω, σ), considered as
small perturbations of B(0, ω, σ), will also have negative upper bound as long
as ε is sufficiently small.

Recalling m ∈ Z and σ ∈ [− 1
2 , 0]× [0,∞) and solving (m+σ1)

2+σ2
2 = 1, we

identify the set of all wave vectors σ that we need to consider in the eigenvalue
problems (42). Let us set

S0 := {σ ∈ [−1

2
, 0]× [0,∞) | C0 : σ2

1 + σ2
2 = 1, C1 : (σ1 + 1)2 + σ2

2 = 1,

C−1 : (σ1 − 1)2 + σ2
2 = 1},

and distinguish the following four regions around the set S0

R1 : = {σ ∈ [−1

2
, 0]× [0,∞) | dist(σ, σ∗) ≤ δ},

R2 : = {σ ∈ [−1

2
, 0]× [0,∞) | dist(σ, (0, 0)) ≤ δ},

R3 : = {σ ∈ [−1

2
, 0]× [0,∞) | dist(σ, C0) ≤ δ, dist(σ, σ∗) ≥ δ},

R4 : = {σ ∈ [−1

2
, 0]× [0,∞) | dist(σ, C1) ≤ δ, dist(σ, σ∗) ≥ δ,

dist(σ, (0, 0)) ≥ δ}.

Here σ∗ = (− 1
2 ,

√
3
2 ) and we assume δ > 0 is sufficiently small. Later, we will

determine an appropriate size of δ with respect to ε to characterize the unsta-
ble wave vectors. The above distinction follows from the operator B(0, ω, σ).
Indeed, the two circles C0 and C1 (resp. C1 and C−1) intersect at the point

σ∗ = (− 1
2 ,

√
3
2 ) (resp. (0, 0)) (see Figure 1). For each region of R1 and R2,

the operator B(0, ω, σ) has two small eigenvalues, while there is only one small
eigenvalue for each region of R3 and R4. We will investigate the eigenvalue
problem (42) for R1 in this section and for other regions in the next section.

If b = 0, as discussed in [18], Fε,ω in (37) can also be π-periodic even
if ũε,ω is 2π-periodic. It follows that the frequency m of the eigenfunctions
ϕm(ξ) = eimξ is even, i.e., m ∈ 2Z in (44), in which case there are only two
regions of σ ∈ [−1, 0]× [0,∞) around the set S0 because S0 ⊂ [−1, 0]× [0,∞)
consists of two circles σ2

1 + σ2
2 = 1 and (σ1 + 2)2 + σ2

2 = 1.
Our goal for this section is to provide the proof of our main result, Theorem

1.3. We emphasize that solving an eigenvalue problem of the Bloch operator
B(ε, ω, σ) only for σ ∈ R1 is enough to prove Theorem 1.3 because σ∗ =
(− 1

2 ,
3
2 ) ∈ Sε,ω for all ω ∈ [− 1

2 ,
1
2 ] and any b ̸= 0 and s with 27s− 38b2 > 0. In
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Figure 1. Four regions of the Bloch wave vectors. Due to
the reflection symmetry R1 in (41), it is enough to consider
the eigenvalue problems (42) only for σ1 ∈ [− 1

2 , 0]. The blue
dot indicates σ∗.

fact, we will prove that not only σ∗ but also all σ ∈ R1 with |σ−σ∗| ≤ δ = O(εr)
for r > 1 are included in Sε,ω.

3.2. An eigenvalue problem of B(ε, ω, σ) for σ ∈ R1

We consider the eigenvalue problem (42) for σ ∈ R1, in which region there
are two critical eigenfunctions

ϕ0(ξ) ≡ 1 and ϕ1(ξ) = eiξ

of B(0, ω, σ) associated to small eigenvalues

µ0(σ) = −(1− σ2
1 − σ2

2)
2 and µ1(σ) = −(1− (1 + σ1)

2 − σ2
2)

2.

Since for small ε > 0 the eigenfunctions of B(ε, ω, σ) for σ ∈ R1 can be con-
sidered as small perturbations of ϕ0(ξ) and ϕ1(ξ), it is very natural to reduce
the eigenvalue problem (42) for σ ∈ R1 to the 2× 2 eigenvalue problem by the
Lyapunov-Schmidt reduction.

Define the orthogonal projection in L2
per([0, 2π]) onto span{ϕ0, ϕ1}:

PW =
1

2π

∫ 2π

0

Wϕ0 dξϕ0 +
1

2π

∫ 2π

0

Wϕ1 dξϕ1,(45)

or equivalently as a vector form

(46) P̃W =
1

2π

(∫ 2π

0

Wϕ0 dξ,

∫ 2π

0

Wϕ1 dξ
)T

∈ C2.

We now decompose W ∈ L2
per([0, 2π]) into W = β0ϕ0 + β1ϕ1 + V with

β = (β0, β1) ∈ C2 and PV = 0, and then rewrite (42) as

0 = P̃ [B(ε, ω, σ)− λ](β0ϕ0 + β1ϕ1 + V),
0 = (I − P )[B(ε, ω, σ)− λ](β0ϕ0 + β1ϕ1 + V).

(47)
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As discussed in Section 2, the second equation of (47) can be solved locally for
V = V(ε, ω, σ, λ, β) in the vicinity of (ε, σ, λ, β) = (0, σ∗, 0, (0, 0)). Since B − λ
is linear and invertible on ran(I − P ) for small ε and λ, we can readily check
that V has the form

V = V0(ε, ω, σ, λ)β0 + V1(ε, ω, σ, λ)β1.

In what follows we will obtain the asymptotic expansion of Vj , j = 0, 1, with
respect to the bifurcation parameter ε

Vj(ε, ω, σ, λ) = Vj |ε=0 + ∂εVj |ε=0ε+O(ε2), j = 0, 1.

To find Vj we first differentiate the second equation of (47) with respect to βj

for j = 0, 1, respectively,

(48) 0 = (I − P )[B(ε, ω, σ)− λ](ϕj + Vj), j = 0, 1.

Plugging ε = 0 into this form gives

(I − P )[B(0, ω, σ)− λ]Vj |ε=0 = −(I − P )[B(0, ω, σ)− λ]ϕj = 0.

Since the operator B(0, ω, σ) on ran(I − P ) is bijective, we have

(49) Vj |ε=0 = 0, j = 0, 1.

Next, take the derivative of (48) with respect to ε

0 = (I − P )[∂εB(ε, ω, σ)](ϕj + Vj) + (I − P )[B(ε, ω, σ)− λ]∂εVj .

Inserting ε = 0 into this form and then using the identities (49) yields that for
each j = 0, 1,

(I − P )[B(0, ω, σ)− λ]∂εVj |ε=0

= − (I − P )[∂εB(ε, ω, σ)|ε=0]ϕj

= − (I − P )
[
− 4ω(∂ξ + iσ1)

2
(
1 + (∂ξ + iσ1)

2 − σ2
2

)
+

12b
√
1− 4ω2

√
27s− 38b2

cos ξ
]
ϕj

= − 12b
√
1− 4ω2

√
27s− 38b2

(I − P )[ϕj cos ξ].

By direct calculation, (I − P )[ϕ0 cos ξ] =
1
2e

−iξ and (I − P )[ϕ1 cos ξ] =
1
2e

i2ξ,
so we arrive at

(50) (I − P )[B(0, ω, σ)− λ]∂εV0|ε=0 = − 6b
√
1− 4ω2

√
27s− 38b2

e−iξ,

and

(51) (I − P )[B(0, ω, σ)− λ]∂εV1|ε=0 = − 6b
√
1− 4ω2

√
27s− 38b2

ei2ξ.

Since both span{e−iξ} and span{e2iξ} are invariant under the invertible oper-
ator (I − P )[B(0, ω, σ)− λ], each ∂εVj |ε=0 has the form

∂εV0|ε=0 = h0e
−iξ and ∂εV1|ε=0 = h1e

i2ξ
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for some complex functions h0(ε, ω, σ, λ) and h1(ε, ω, σ, λ). Inserting these
forms into (50) and (51), respectively, it is straightforward to check that

(I − P )[B(0, ω, σ)− λ]h0e
−iξ = [−(1− (σ1 − 1)2 − σ2

2)
2 − λ]h0e

−iξ,

and

(I − P )[B(0, ω, σ)− λ]h1e
i2ξ = [−(1− (σ1 + 2)2 − σ2

2)
2 − λ]h1e

i2ξ.

Consequently, from (50)-(51) and recalling (σ, λ) ≈ (σ∗, 0) for σ ∈ R1, h0 and
h1 are determined by

h0 =
6b
√
1− 4ω2

√
27s− 38b2[(1− (σ1 − 1)2 − σ2

2)
2 + λ]

=
3b
√
1− 4ω2

2
√
27s− 38b2

+O
(
|σ1 +

1

2
|+ |σ2 −

√
3

2
|+ |λ|

)
,

(52)

and

h1 =
6b
√
1− 4ω2

√
27s− 38b2[(1− (σ1 + 2)2 − σ2

2)
2 + λ]

=
3b
√
1− 4ω2

2
√
27s− 38b2

+O
(
|σ1 +

1

2
|+ |σ2 −

√
3

2
|+ |λ|

)
.

(53)

So far we have shown that the second equation (47) can be uniquely solved for

(54) V(ε, ω, σ, λ, β) = [h0e
−iξε+O(ε2)]β0 + [h1e

2iξε+O(ε2)]β1

in a neighborhood of (ε, σ, λ, β) = (0, σ∗, 0, (0, 0)).
Let us find the 2× 2 reduced eigenvalue problem of (42) by solving the first

equation of (47). Recalling (37) and (39), and using

P [ϕ0 cos ξ] =
1

2
ϕ1, P [ϕ1 cos ξ] =

1

2
ϕ0, and P [ϕ0 cos 2ξ] = 0 = P [ϕ1 cos 2ξ],

we first compute P [B(ε, ω, σ)− λ](β0ϕ0 + β1ϕ1) as

P [−(1 + (1 + 2εω)(∂ξ + iσ1)
2 − σ2

2)
2 − λ+ F(ũε,ω)](β0ϕ0 + β1ϕ1)

= [−(1− (1 + 2εω)σ2
1 − σ2

2)
2 − λ]β0ϕ0

+ [−(1− (1 + 2εω)(1 + σ1)
2 − σ2

2)
2 − λ]β1ϕ1

+ ε
6b
√
1− 4ω2

√
27s− 38b2

(β0ϕ1 + β1ϕ0)

+ ε2
[(

1− 54s− 36b2

27s− 38b2
(1− 4ω2)

)
(β0ϕ0 + β1ϕ1)

− 32b3ω
√
1− 4ω2

(27s− 38b2)
√
27s− 38b2

(β0ϕ1 + β1ϕ0)
]

+O(ε3)(β0 + β1)(ϕ0 + ϕ1).

(55)
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Similarly, by inserting (54) into P [B(ε, ω, σ)− λ]V and using

P [e−iξ cos ξ] =
1

2
ϕ0 and P [ei2ξ cos ξ] =

1

2
ϕ1,

we deduce that

P [B(ε, ω, σ)− λ]V = P [F(ũε,ω)]V

= P
[
ε
12b

√
1− 4ω2

√
27s− 38b2

cos ξ +O(ε2)
]

× [(h0e
−iξε+O(ε2))β0 + (h1e

i2ξε+O(ε2))β1]

= ε2
12b

√
1− 4ω2

√
27s− 38b2

(h0β0P [e−iξ cos ξ] + h1β1P [ei2ξ cos ξ])

+O(ε3)(β0 + β1)(ϕ0 + ϕ1)

= ε2
6b
√
1− 4ω2

√
27s− 38b2

(h0β0ϕ0 + h1β1ϕ1) +O(ε3)(β0 + β1)(ϕ0 + ϕ1).

(56)

Recalling (46) and applying (55)-(56) to the first equation of (47), we obtain
the 2× 2 matrix M1(ε, ω, σ, λ) satisfying

(57)

(
0
0

)
= M1(ε, ω, σ, λ)

(
β0

β1

)
:=

(
m11 m12

m21 m22

)(
β0

β1

)
,

in which each entry of M1 is

m11 = −(1− (1 + 2εω)σ2
1 − σ2

2)
2 − λ

+ ε2
(
1− 54s−36b2

27s−38b2 (1− 4ω2) + 6b
√
1−4ω2

√
27s−38b2

h0

)
+O(ε3),

m12 = m21 = ε 6b
√
1−4ω2

√
27s−38b2

− ε2 32b3ω
√
1−4ω2

(27s−38b2)
√
27s−38b2

+O(ε3),

m22 = −(1− (1 + 2εω)(1 + σ1)
2 − σ2

2)
2 − λ

+ ε2
(
1− 54s−36b2

27s−38b2 (1− 4ω2) + 6b
√
1−4ω2

√
27s−38b2

h1

)
+O(ε3).

(58)

Here, h0 and h1 can be found in (52)-(53). For computational convenience,

let us rewrite m11 and m22 in terms of σ̂ := σ − σ∗ = (σ1 +
1
2 , σ2 −

√
3
2 ). For

sufficiently small |σ̂| < δ,

m11 = − (σ̂1 −
√
3σ̂2)

2 + εω(σ̂1 −
√
3σ̂2) + ε2(1− 1

4ω
2)

− ε2(1− 4ω2) 54s−45b2

27s−38b2

− λ+O(ε2|σ̂|+ ε2|λ|+ ε|σ̂|2 + |σ̂|3 + ε3),

m22 = − (σ̂1 +
√
3σ̂2)

2 − εω(σ̂1 +
√
3σ̂2) + ε2(1− 1

4ω
2)

− ε2(1− 4ω2) 54s−45b2

27s−38b2

− λ+O(ε2|σ̂|+ ε2|λ|+ ε|σ̂|2 + |σ̂|3 + ε3).

(59)

We are now ready to prove Theorem 1.3.
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Proof of Theorem 1.3. We fix any b ̸= 0 and s with 27s−38b2 > 0. In order to
investigate the spectral instability of ũε,ω(ξ) for all ω ∈ [− 1

2 ,
1
2 ], we will prove

that for each ω ∈ [− 1
2 ,

1
2 ] there is a positive λ satisfying detM1(ε, ω, σ̂, λ) =

0 for some wave vectors σ ∈ R1. We again notice that the matrix M1 is
Hermitian due to the self-adjointness of B(ε, ω, σ), that is, every eigenvalue of
M1 is real-valued.

According to the Weierstrass Preparation Theorem ([5, Section 2.6]), there
is an analytic function q(ε, σ̂, λ) in a neighborhood of (ε, σ̂, λ) = (0, (0, 0), 0)
such that q(0, (0, 0), 0) = 1 and

(60) q(ε, σ̂, λ) detM1(ε, ω, σ̂, λ) = λ2 + a1λ+ a0 = 0,

in which a0(ε, σ̂) and a1(ε, σ̂) are also analytic functions in a neighborhood of
(ε, σ̂) = (0, (0, 0)). Indeed, a0 and a1 are determined by

a0(ε, σ̂) = q(ε, σ̂, 0) detM1(ε, ω, σ̂, 0)

= detM1(ε, ω, σ̂, 0) +O(ε+ |σ̂|) detM1(ε, ω, σ̂, 0),
(61)

and

(62)

a1(ε, σ̂) = qλ(ε, σ̂, 0) detM1(ε, ω, σ̂, 0) + q(ε, σ̂, 0) detM1λ(ε, ω, σ̂, 0)

= detM1λ(ε, ω, σ̂, 0) +O(1) detM1(ε, ω, σ̂, 0)

+O(ε+ |σ̂|) (detM1(ε, ω, σ̂, 0) + detM1λ(ε, ω, σ̂, 0)).

Here ·λ means the derivative of · with respect to λ. Since both eigenvalues

λ1(ε, ω, σ̂) =
−a1+

√
a2
1−4a0

2 and λ2(ε, ω, σ̂) =
−a1−

√
a2
1−4a0

2 are real, a21 − 4a0 is
nonnegative. It follows that both eigenvalues are all nonpositive if and only if

a0 ≥ 0 and a1 ≥ 0. However, at |σ̂| = 0, i.e., σ = σ∗ = (− 1
2 ,

√
3
2 ), we have by

direct calculation that

(63) a0(ε, (0, 0)) = −36b2(1− 4ω2)

27s− 38b2
ε2 +O(ε3)

and

a1(ε, (0, 0)) = − 2
[
1− 1

4ω
2 − (1− 4ω2) 54s−45b2

27s−38b2

]
ε2 +O(1) 36b

2(1−4ω2)
27s−38b2 ε2

+O(ε3)

≤ − 2
[
15
16 − (1− 4ω2) 54s−(45−C)b2

27s−38b2

]
ε2 +O(ε3)

(64)

for some positive number C > 0.
We recall that ω ∈ [− 1

2 ,
1
2 ] and 27s− 38b2 > 0. If 1− 4ω2 is bounded away

from 0, we see immediately that

a0(ε, (0, 0)) < 0

for sufficiently small ε > 0, in which case λ2 is positive. Noting that 54s −
(45− C)b2 > 0, we now assume 1− 4ω2 is sufficiently small so that

0 ≤ 1− 4ω2 ≤ 1

2
· 27s− 38b2

54s− (45− C)b2
.
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Then we conclude that

a1(ε, (0, 0)) ≤ −7

8
ε2 +O(ε3) < 0

for sufficiently small ε > 0, in which case λ1 is positive. In particular, for ω =
± 1

2 the Bloch operator (39) has constant coefficients, so that the eigenvalues
λ±,j , j = 1, 2 for σ ∈ R1 are obtained as follows:

λ±,1 = − (σ̂1 −
√
3σ̂2)

2 ± 1

2
ε(σ̂1 −

√
3σ̂2) +

15

16
ε2

+O(ε2|σ̂|+ ε|σ̂|2 + |σ̂|3),

λ±,2 = − (σ̂1 +
√
3σ̂2)

2 ∓ 1

2
ε(σ̂1 +

√
3σ̂2) +

15

16
ε2

+O(ε2|σ̂|+ ε|σ̂|2 + |σ̂|3).

(65)

Furthermore, if |σ̂| ≤ δ = O(εr) for any fixed r > 1, we readily see from the
leading order terms of ε and σ̂ in (59) that the identities (63) and (64) remain
valid by replacing O(ε3) by O(ε2r). It completes the proof of Theorem 1.3. □

3.3. Linear instability of the roll solutions

In this section we observe that the spectral instability of Theorem 1.3 leads
to linear instability in the sense that there exists an exponentially growing
solution to the linearized equation (36).

In Section 3.2 we have found that there exists ε̃0 > 0 such that B(ε, ω, σ)
has a positive eigenvalue λ(ε, ω, σ) for (ε, ω) ∈ (0, ε̃0) × [− 1

2 ,
1
2 ], where σ is

sufficiently close to σ∗ = (− 1
2 ,

√
3
2 ) by O(εr) for some r > 1. Moreover, we

notice that λ(σ∗) is a simple eigenvalue from (63)-(64) 2 when ω ∈ (− 1
2 ,

1
2 ),

thus λ(ε, ω, σ) can be defined as a positive smooth mapping in the vicinity of
σ∗ for fixed ε and ω. Let us denote the square of unstable wave vectors by
I × J in R1,

I × J := [−1/2,−1/2 +O(εr)]× [
√
3/2,

√
3/2 +O(εr)] ⊂ Sε,ω

for some O(εr) > 0.

Proposition 3.1. Let s, b and ε̃0 be the same as in Theorem 1.3 and fix
any ε ∈ (0, ε̃0] and ω ∈ (− 1

2 ,
1
2 ). Let W (ξ, σ) be the continuous family of the

eigenfunctions of B(ε, ω, σ) corresponding to the positive eigenvalue λ(ε, ω, σ)
for σ ∈ I × J . Then for the function

(66) U(ξ, y) =

∫
I×J

ei(σ1ξ+σ2y)W (ξ, σ)dσ1dσ2,

it holds that for all t ≥ 0,

∥eLε,ωtU∥L2(R2) ≥ C
eλ(ε,ω,σ∗)t

(1 + t)
1
l

2Such a0(ε, (0, 0)) and a1(ε, (0, 0)) do not allow an equal root to (60).
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for some positive constants C and l.

Proof. In what follows we suppress ε, ω-dependencies of λ and B for simplicity.
We note that

V (t, ξ, y) :=

∫
I×J

eλ(σ)tei(σ1ξ+σ2y)W (ξ, σ)dσ1dσ2

solves the linearized equation (36) with the initial data U . Indeed, V (0, ξ, y) =
U(ξ, y),

∂tV =

∫
I×J

λ(σ)eλ(σ)tei(σ1ξ+σ2y)W (ξ, σ)dσ1dσ2,

and from (42),

Lε,ωV =

∫
I×J

eλ(σ)tei(σ1ξ+σ2y)B(σ)W (ξ, σ)dσ1dσ2

=

∫
I×J

λ(σ)eλ(σ)tei(σ1ξ+σ2y)W (ξ, σ)dσ1dσ2,

thus eLε,ωtU = V . Rewriting V as

V (t, ξ, y) =

∫
R
eiσ2y

(∫
I

χJ(σ2)e
λ(σ)teiσ1ξW (ξ, σ)dσ1

)
dσ2,

it follows from the Plancherel theorem that

∥V (t, ξ, ·)∥2L2
y(R) =

∥∥∥∥∫
I

χJ(σ2)e
λ(σ)teiσ1ξW (ξ, σ)dσ1

∥∥∥∥2
L2

σ2
(R)

.

Here χJ(σ2) is the characteristic function on J . Integrating in ξ over R, we
have that for all t ≥ 0,

∥V (t, ·, ·)∥2L2(R2) =

∫ ∥∥∥∥∫
I

χJ(σ2)e
λ(σ)teiσ1ξW (ξ, σ)dσ1

∥∥∥∥2
L2

ξ(R)
dσ2

=

∫
J

∥∥∥∥∫
I

eλ(σ)teiσ1ξW (ξ, σ)dσ1

∥∥∥∥2
L2

ξ(R)
dσ2

≃
∫
J

∫
I

∥∥∥eλ(σ)tW (ξ, σ)
∥∥∥2
L2

per([0,2π])
dσ1dσ2,

(67)

where we used Fubini and the fact that the following equivalence holds for some
constants C1 and C2:

C1

∫
I

∥∥∥eλ(σ)tW (ξ, σ)
∥∥∥2
L2

per([0,2π])
dσ1 ≤

∥∥∥∥∫
I

eλ(σ)teiσ1ξW (ξ, σ)dσ1

∥∥∥∥2
L2

ξ(R)

≤ C2

∫
I

∥∥∥eλ(σ)tW (ξ, σ)
∥∥∥2
L2

per([0,2π])
dσ1.
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We refer to [11, Lemma 3.3] for the above inequalities. By the continuity of
the map σ ∈ I × J 7→ W (·, σ) ∈ L2

per(R), the right end of (67) is bounded for
each t, and thus we obtain that

C1

∫
J

∫
I

e2λ(σ)tdσ1dσ2 ≤ ∥V (t, ·, ·)∥2L2(R2) ≤ C2

∫
J

∫
I

e2λ(σ)tdσ1dσ2

for constants C1 and C2 depending on ε, ω and σ∗. Since λ(σ) is smooth on
I × J , if σ∗ has the multiplicity of l ≥ 1, we can write

λ(σ)− λ(σ∗) =

l∑
k=0

ak(σ1 − σ∗
1)

l−k(σ2 − σ∗
2)

k + o(|σ − σ∗|l),

where not all ak are zero. Substituting the above expansion into λ(σ) with
letting σi − σ∗

i = ki yields that∫
J

∫
I

e2λ(σ)tdk1dk2 = e2λ(σ
∗)t

∫ O(εr)

0

∫ O(εr)

0

e(
∑l

k=0 akk1
l−kk2

k+o(|k|l))tdk1dk2

≥ e2λ(σ
∗)t

∫ O(εr)

0

∫ O(εr)

0

e−C(kl
1+kl

2)tdk1dk2

for some constant C > 0. Similarly as in [11], we estimate the integral bounded

below by O(ε2r)e−Cεrl when 0 ≤ t ≤ 1, and by Ct−
2
l when t > 1. In particular,

for the case t > 1 we change variables pi = klit (i = 1, 2) such that∫ O(εr)

0

e−Ckl
1tdk1 = t−

1
l

∫ O(εr)lt

0

p
1
l −1
1 e−Cp1

l
dp1.

We arrive at

C
eλ(σ

∗)t

(1 + t)
1
l

≤ ∥V (t, ·, ·)∥L2(R2)

for some constant C depending on ε, ω and σ∗. □

4. Discussion about unstable Bloch wave vectors

This section is devoted to providing more information about unstable wave
vectors of the Bloch operators. Although the proof of Theorem 1.3 was done
by investigating the unstable modes in the region R1, we try to examine what
unstable modes the Bloch operators B(ε, ω, σ) have in other regions (see Figure
1 in the previous section).

4.1. An eigenvalue problem of B(ε, ω, σ) for σ ∈ R2

In this region we focus on how the transverse direction, i.e., σ2 ̸= 0, affects
the unstable modes of the Bloch operator because the case of σ2 = 0 was
already derived in [13] for b = 1 and s = 2. Without the transverse direction
(i.e., σ2 = 0), the following set

Γ := {σ1 ∈ R | |σ1| < δ}
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for small δ > 0 is only the region we need to consider. It has been proved in
[13] that the periodic solutions ũε,ω are Eckhaus-unstable, that is, for each ω ∈
[− 1

2 ,
1

2
√
3
)∪( 1

2
√
3
, 1
2 ] there is a positive eigenvalue of B(ε, ω, σ1) for σ1 ∈ Γ\{0}.

In what follows we prove that this result is valid also for the region R2 unless
σ1 = 0. In addition, we will see how the unstable modes are determined if
σ1 = 0 and σ2 ̸= 0. We first state the observation of the unstable wave vectors
for the region R2.

Theorem 4.1. Fix any r > 1. Then for sufficiently small ε > 0, R2\{(0, 0)} ⊂
Sε,ω with δ = O(εr) if

(68) ω ∈ [−1

2
,− 1

2
√
3
) ∪ (

1

2
√
3
,
1

2
] or ω <

−2b2ε

3(27s− 38b2)
+O(ε3).

Remark 4.2. The sufficient conditions (68) for instability are the Eckhaus cri-
terion and the zigzag instability, respectively, corresponding to (3) in [18]. For
the case b = 0 studied in [18], the coefficients of Lε,ω can also be π-periodic, so
that our region R2 corresponds to σ ≈ (2, 0) there.

For σ ∈ R2, there are two critical eigenfunctions ϕ1(ξ) = eiξ and ϕ−1(ξ) =
e−iξ of B(0, ω, σ). However, we take the basis functions U1 := cos ξ = 1

2 (ϕ1(ξ)+

ϕ−1(ξ)) and U2 := sin ξ = 1
2i (ϕ1(ξ) − ϕ−1(ξ)) to be compatible with the cal-

culations in [13], and we then define the orthogonal projection in L2
per([0, 2π])

onto span{U1, U2}:

PW =
1

π

∫ 2π

0

WU1 dξU1 +
1

π

∫ 2π

0

WU2 dξU2,

or equivalently as a vector form

(69) P̃W =
1

π

(∫ 2π

0

WU1 dξ,

∫ 2π

0

WU2 dξ
)T

∈ C2.

Decomposing W ∈ L2
per([0, 2π]) into W = β1U1+β2U2+V with β = (β1, β2) ∈

C2 and PV = 0, we rewrite (42) for σ ∈ R2 as two equations

0 = P̃ [B(ε, ω, σ)− λ](β1U1 + β2U2 + V),
0 = (I − P )[B(ε, ω, σ)− λ](β1U1 + β2U2 + V).

(70)

Repeating the procedure that we have done for σ ∈ R1 (or see [13] for a
detailed calculation with σ2 = 0), we can solve the second equation of (70)
locally for V

(71)
V = [(h1 + h2 cos 2ξ + h3 sin 2ξ)ε+O(ε2)]β1

+ [(r1 cos 2ξ + r2 sin 2ξ)ε+O(ε2)]β2,
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in a neighborhood (ε, σ, λ, β) ≈ (0, (0, 0), 0, (0, 0)). Here, the functions hj and
rj are determined by

h1 = 6b
√
1−4ω2

√
27s−38b2

· 1
(1−σ2

1−σ2
2)

2+λ)

= 6b
√
1−4ω2

√
27s−38b2

+O(σ2
1 + σ2

2 + |λ|),

h2 = r2 = 6b
√
1−4ω2

√
27s−38b2

· (3+σ2
1+σ2

2)
2+16σ2

1+λ

[(3+σ2
1+σ2

2)
2+16σ2

1+λ]2−64σ2
1(3+σ2

1+σ2
2)

2

= 2b
√
1−4ω2

3
√
27s−38b2

+O(σ2
1 + σ2

2 + |λ|),

h3 = − r1 = 6b
√
1−4ω2

√
27s−38b2

· −8iσ1(3+σ2
1+σ2

2)

[(3+σ2
1+σ2

2)
2+16σ2

1+λ]2−64σ2
1(3+σ2

1+σ2
2)

2

= O(|σ1|(1 + σ2
2 + |λ|)).

(72)

By substituting (71)-(72) into the first equation of (70), we obtain the following
2× 2 reduced eigenvalue equation of (42) for σ ∈ R2,

(73)

(
0
0

)
= M2(ε, ω, σ, λ)

(
β1

β2

)
:=

(
m11 m12

m21 m22

)(
β1

β2

)
,

in which all entries of M2 are given by

m11 = − (2εω + (1 + 2εω)σ2
1 + σ2

2)
2 − 4σ2

1(1 + 2εω)2 − λ+ ε2

− ε2 81s−38b2

27s−38b2 (1− 4ω2) + 12bε2
√
1−4ω2

√
27s−38b2

(h1 +
1
2h2) +O(ε3)

= − 2ε2(1− 4ω2) +O(ε3)− 4σ2
1 − λ+O(ε|σ|2 + ε2|λ|+ |σ|4),

m12 = m̄21 = 4iσ1(1 + 2εω)(2εω + (1 + 2εω)σ2
1 + σ2

2) +
6bε2

√
1−4ω2

√
27s−38b2

r1

+O(ε3)

= 8iσ1εω +O(ε2|σ|(1 + |λ|) + |σ|3) +O(ε3),

m22 = − (2εω + (1 + 2εω)σ2
1 + σ2

2)
2 − 4σ2

1(1 + 2εω)2 − λ+ ε2

− ε2 27s−34b2

27s−38b2 (1− 4ω2) + 6bε2
√
1−4ω2

√
27s−38b2

r2 +O(ε3)

= − 4σ2
1 − λ+O(ε|σ|2 + ε2|λ|+ |σ|4) +O(ε3).

(74)

Here we emphasize that the coefficients b and s in (1) do not affect the estimates
of all entries of M2 as long as 27s− 38b2 > 0. We see from (74) that the terms
including b and s all disappear or are absorbed into the error terms. This is
the reason that the stability and instability results in one dimension can be
obtained regardless of the values of b and s as long as 27s − 38b2 > 0. In
addition, if we compare our reduced matrix M2 to the one of [13], nothing has
changed except that the term |σ1| in [13] has been replaced by |σ| here. Thus,
the treatment of the reduced eigenvalue problem (73) follows exactly the one
of [13].

Proof of Theorem 4.1. We first notice that the error terms O(ε3) that appear
in m12, m21 and m22 can be absorbed into other error terms O(ε2|σ|(1 + |λ|))
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and O(εσ2+ε2|λ|), respectively. Consequently, the reduced matrix M2 can be
rewritten as

M2(ε, ω, σ, λ)

=

(
c(ε, ω)− 4σ2

1 − λ 8iσ1ωε
−8iσ1ωε −4σ2

1 − λ

)
+

(
O(ε|σ|2 + ε2|λ|+ |σ|4) O(ε2|σ|(1 + |λ|) + |σ|3)
O(ε2|σ|(1 + |λ|) + |σ|3) O(ε|σ|2 + ε2|λ|+ |σ|4)

)
,

(75)

where c(ε, ω) := −2ε2(1−4ω2)+O(ε3). This is due to the reflection symmetries
defined in (41) and the fact that the matrixM2 at σ = (0, 0) and λ = 0 becomes

(76) M2(ε, ω, (0, 0), 0) =

(
c(ε, ω) +O(ε3) 0

0 0

)
(see [13, Lemma 3.1] for the proof). We now solve detM2(ε, ω, σ, λ) = 0 for λ.
A direct computation from (75) gives

detM2(ε, ω, σ, λ) = λ2 − λ(c(ε, ω)− 8σ2
1)− (c(ε, ω)− 4σ2

1)4σ
2
1 − 64σ2

1ω
2ε2

+ F (ε, ω, σ, λ),

where

F (ε, ω, σ, λ) = O
(
|λ|(ε|σ|2 + ε2|λ|+ |σ|4) + (ε2 + |σ|2)(ε|σ|2 + ε2|λ|+ |σ|4)

+ (ε|σ|2 + ε2|λ|+ |σ|4)2 + ε|σ|(ε2|σ|(1 + |λ|) + σ3)

+ (ε2|σ|(1 + |λ|) + |σ|3)2
)
.

Again using the Weierstrass Preparation Theorem, there is an analytic function
q(ε, σ, λ) in a neighborhood of (ε, σ, λ) = (0, (0, 0), 0) such that q(0, (0, 0), 0) = 1
and

q(ε, σ, λ) detM2(ε, ω, σ, λ) = λ2 + a1λ+ a0 = 0.

Here, similarly as in (61)-(62), the analytic functions a0(ε, σ) and a1(ε, σ) are
determined by

a0(ε, σ) = 8σ2
1(ε

2(1− 12ω2) + 2σ2
1) +O(|σ|2(ε+ |σ|)3),

a1(ε, σ) = 2ε2(1− 4ω2) + 8σ2
1 +O((ε+ |σ|)3).

(77)

As mentioned in the proof of Theorem 1.3, two eigenvalues are real and these
are all nonpositive if and only if a0 ≥ 0 and a1 ≥ 0.

(i) In the case σ = (0, 0) ∈ R2, a0 = 0 and a1 = 2ε2(1−4ω2)+O(ε3) > 0 for
small ε > 0 unless ω = ± 1

2 , while a0 = a1 = 0 if ω = ± 1
2 because ũε,ω ≡ 0. It

implies that (0, 0) /∈ Sε,ω for all ω ∈ [− 1
2 ,

1
2 ], that is, the rolls are stable under

the perturbation with the same period of ũε,ω, called co-periodic stable.
(ii) If σ ∈ R2 with σ1 ̸= 0, then the expansion of a0 in (77) immediately

leads to the spectral instability when 1 − 12ω2 < 0. That is, there is small
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ε > 0 such that for any fixed r > 1,

{σ ∈ R2 | σ1 ̸= 0, |σ| ≤ O(εr)} ⊂ Sε,ω

for all ω ∈ [− 1
2 ,−

1
2
√
3
) ∪ ( 1

2
√
3
, 1
2 ].

(iii) We now consider the eigenvalue equation (42) for σ ∈ R2 with σ1 = 0, in
which case the expression of M2(ε, ω, σ, λ) in (75) is not enough to investigate
the signs of eigenvalues. We need refined estimates of σ2 absorbed in the error
terms of (75). However, as shown in the second case (ii), the instability is
readily determined by the coefficient of σ2

2 of detM2(ε, ω, σ, 0); hence we first
consider each entry of M2(ε, ω, σ, 0) with σ1 = 0 as follows:

m11|σ1=0 = − (2εω + σ2
2)

2 + ε2 − ε2 81s−38b2

27s−38b2 (1− 4ω2)

+ 12bε2
√
1−4ω2

√
27s−38b2

(h1 +
1
2h2) +O(ε3),

= − 2ε2(1− 4ω2) +O(ε3) +O(εσ2
2 + σ4

2),

m12|σ1=0 = m21|σ1=0 = 0,

m22|σ1=0 = − (2εω + σ2
2)

2 + ε2 − ε2 27s−34b2

27s−38b2 (1− 4ω2)

+ 6bε2
√
1−4ω2

√
27s−38b2

r2 +O(ε3)

= − 4εωσ2
2 −

8b2ε2(1−4ω2)
3(27s−38b2) σ

2
2 +O(σ4

2 + ε3σ2
2).

Then the coefficient of σ2
2 of detM2(ε, ω, σ, 0) is

(78)
(
− 2ε2(1− 4ω2) +O(ε3)

)(
− 4εω − 8b2ε2(1− 4ω2)

3(27s− 38b2)
+O(ε3)

)
.

In order to have O(ε5) as error terms in this expansion, we should find the
coefficient of the term of order ε3 in m11|σ1=0. However, following the proof of
(76) in [13], we see that

α1f̃α1
= −2ε2(1− 4ω2) +O(ε3),

where f̃ = f̃(ε, ω, α1) can be found in (29). From determining the term of
order ε3, we arrive at

(79) α1f̃α1
= −2ε2(1− 4ω2) +

64b2ω(1− 4ω2)

3(27s− 38b2)
ε3 +O(ε4).

Replacing the first term of (78) by the right-hand side of (79), we have the
expansion

detM2(ε, ω, σ, 0)|σ1=0

=
(
− 2ε2(1− 4ω2) + 64b2ω(1−4ω2)

3(27s−38b2) ε3 +O(ε4)
)

×
(
− 4εω − 8b2ε2(1−4ω2)

3(27s−38b2) +O(ε3)
)
σ2
2

+O(ε2(σ4
2 + ε3σ2

2) + εσ2
2(εσ

2
2 + σ4

2) + (εσ2
2 + σ4

2)(σ
4
2 + ε3σ2

2))
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=
[
8ε3ω(1− 4ω2)− 256b2ω2(1−4ω2)

3(27s−38b2) ε4 + 16b2(1−4ω2)2

3(27s−38b2) ε
4
]
σ2
2

+O(εσ6
2 + ε2σ4

2 + ε5σ2
2 + σ8

2).

Consequently, if |σ2| ≤ δ = O(εr) for any fixed r > 1, the sufficient condition
of instability is determined by

(80) 8ε3ω(1− 4ω2)− 256b2ω2(1− 4ω2)

3(27s− 38b2)
ε4 +

16b2(1− 4ω2)2

3(27s− 38b2)
ε4 < 0.

In the case that σ1 ̸= 0 and 1−4ω2 = 0, we have already proved that σ ∈ Sε,ω,
so we may assume 1− 4ω2 ̸= 0. Therefore, the inequality (80) can be solved as

ω <
−2b2ε

3(27s− 38b2)
+O(ε3).

This completes the proof of Theorem 4.1. □

4.2. An eigenvalue problem of B(ε, ω, σ) for σ ∈ R3

In this region the constant function ϕ0(ξ) ≡ 1 is only the eigenfunction
of B(0, ω, σ) corresponding to a small eigenvalue µ0(σ) = −(1 − σ2

1 − σ2
2)

2.
That is, the eigenvectors of B(ε, ω, σ) for σ ∈ R3 can be considered as small
perturbations of ϕ0 ≡ 1, so we will solve the eigenvalue problem (42) for σ ∈ R3

in one dimension by defining the orthogonal projection in L2
per([0, 2π]) onto

span{ϕ0 ≡ 1}:

PW =
1

2π

∫ 2π

0

Wϕ0 dξϕ0 =
1

2π

∫ 2π

0

W dξ.

Decomposing W ∈ L2
per([0, 2π]) into W = βϕ0 + V with β ∈ C and PV = 0,

we rewrite (42) as

(81) 0 = P [B(ε, ω, σ)−λ](βϕ0+V) and 0 = (I−P )[B(ε, ω, σ)−λ](βϕ0+V).

By recalling σ2
1 + σ2

2 ≈ 1 in R3, the second equation of (81) can be solved
locally for V:

(82) V(ε, σ, λ, β) = βε(h1e
iξ + h2e

−iξ) + βO(ε2)

in a neighborhood of (ε, λ, β) = (0, 0, (0, 0)) and σ2
1 + σ2

2 ≈ 1, where

h1 =
6b
√
1− 4ω2

√
27s− 38b2

· 1

(2σ1 + σ2
1 + σ2

2)
2 + λ

,

h2 =
6b
√
1− 4ω2

√
27s− 38b2

· 1

(2σ1 − σ2
1 − σ2

2)
2 + λ

.

Recalling the Bloch operator (39), for computational convenience in R3, we
use polar coordinates

(83) (σ1, σ2) =
√
1 + d(

1√
1 + 2εω

cos θ, sin θ),
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where |d| ≤ δ and θ ∈ [π2 ,
2π
3 − δ] for small δ > 0, so that h1 and h2 can be

rewritten as

h1 = 6b
√
1−4ω2

√
27s−38b2

[
1

(2 cos θ+1)2 − λ
(2 cos θ+1)4 +O((|d|+ |ε|)(1 + |λ|) + |λ|2)

]
(84)

and

h2 = 6b
√
1−4ω2

√
27s−38b2

[
1

(2 cos θ−1)2 − λ
(2 cos θ−1)4 +O((|d|+ |ε|)(1 + |λ|) + |λ|2)

]
.(85)

Here, we notice that the denominator 2 cos θ+1 of h1 is away from zero because
θ ∈ [π2 ,

2π
3 − δ].

By plugging (82)-(85) into the first equation of (81), we obtain the following
scalar bifurcation equation in polar coordinates

0 = ε2 − d2 − 54s−36b2

27s−38b2 ε
2(1− 4ω2)− λ

+ 36b2ε2(1−4ω2)
27s−38b2

[
1

(2 cos θ+1)2 − λ
(2 cos θ+1)4 + 1

(2 cos θ−1)2 − λ
(2 cos θ−1)4

]
+O(ε2(|d|(1 + |λ|) + |λ|2) + ε3).

(86)

In order to discuss the sign of λ, we arrange (86) as[
1 + 36b2ε2(1−4ω2)

27s−38b2

(
1

(2 cos θ+1)4 + 1
(2 cos θ−1)4

)]
λ

= ε2 − d2 +
[
36b2

(
1

(2 cos θ+1)2 + 1
(2 cos θ−1)2

)
− (54s− 36b2)

]
ε2(1−4ω2)
27s−38b2

+O(ε2(|d|(1 + |λ|) + |λ|2) + ε3).

(87)

We see immediately from the facts 1− 4ω2 ≥ 0 and 27s− 38b2 > 0 that λ > 0
if and only if the right-hand side of (87) is positive.

We will focus on the sufficient conditions, uniformly for θ ∈ [π2 ,
2π
3 − δ] and

for ω ∈ [− 1
2 ,

1
2 ], of instability. Let us fix any r > 1 and substitute δ = O(εr)

into the right-hand side of (87) to derive conditions under which

D := 1−O(ε2r−2)

+
[
36b2

(
1

(2 cos θ+1)2 + 1
(2 cos θ−1)2

)
− (54s− 36b2)

]
(1−4ω2)
27s−38b2

> 0.

(88)

Upon setting

G := 36b2
( 1

(2 cos θ + 1)2
+

1

(2 cos θ − 1)2

)
− (54s− 36b2),

we notice that 1
(2 cos θ+1)2 +

1
(2 cos θ−1)2 ≥ 2 for any θ ∈ [π2 ,

2π
3 − δ] which implies

that

D = 1−O(ε2r−2) + G (1− 4ω2)

27s− 38b2
≥ 1−O(ε2r−2) + (108b2 − 54s)

(1− 4ω2)

27s− 38b2

for all θ ∈ [π2 ,
2π
3 − δ]. Therefore, if 38

27b
2 < s ≤ 2b2, then D > 0 for small ε > 0

and all ω ∈ [− 1
2 ,

1
2 ]. That is, in this case, there is a band of unstable σ ∈ R3

of width O(εr) uniformly for θ.
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For the case s > 2b2, it follows that the sufficient conditions of instability
depend upon θ and ω. In particular, at θ = π

2 and d = 0, i.e., at σ = (0, 1),

D = 1 + (108b2 − 54s)
1− 4ω2

27s− 38b2
.

This gives that D > 0 for all ω ∈ [− 1
2 ,

1
2 ] if

38
27b

2 < s ≤ 70
27b

2, while if s > 70
27b

2,

D > 0 for all ω ∈ [− 1
2 ,−

1
2

√
70b2−27s
108b2−54s ) ∪ ( 12

√
70b2−27s
108b2−54s ,

1
2 ]. We state these

observations in Theorem 4.3 below.

4.3. An eigenvalue problem of B(ε, ω, σ) for σ ∈ R4

In this region, similarly as in R3, the function ϕ1(ξ) ≡ eiξ is only the critical
eigenfunction of B(0, ω, σ) corresponding to a small eigenvalue µ1(σ) = −(1−
(σ1+1)2−σ2

2)
2. In order to obtain a scalar bifurcation equation, we define the

orthogonal projection in L2
per([0, 2π]) onto span{ϕ1(ξ)}

PW =
1

2π

∫ 2π

0

Wϕ̄1 dξϕ1 =
1

2π

∫ 2π

0

We−iξ dξeiξ,

and we rewrite (42) as

(89) 0 = P [B(ε, ω, σ)−λ](βϕ1+V) and 0 = (I−P )[B(ε, ω, σ)−λ](βϕ1+V),
where β ∈ C and PV = 0. Noting that (σ1+1)2+σ2

2 ≈ 1 for σ ∈ R4, we again
use polar coordinates

(90) (σ1 + 1, σ2) =
√
1 + d(

1√
1 + 2εω

cos θ, sin θ),

where |d| ≤ δ and θ ∈ [δ, π
3 − δ] for some small δ > 0. Under the polar

coordinates we repeat the procedure ofR3 for this region to obtain the following
bifurcation equation[

1 + 36b2ε2(1−4ω2)
27s−38b2

(
1

(2 cos θ+1)4 + 1
(2 cos θ−1)4

)]
λ

= ε2 − d2 +
[
36b2

(
1

(2 cos θ+1)2 + 1
(2 cos θ−1)2

)
− (54s− 36b2)

]
ε2(1−4ω2)
27s−38b2

+O(ε2(|d|(1 + |λ|) + |λ|2) + ε3)

(91)

which is exactly the same as the bifurcation equation (87) for R3 except the
range of θ. In this region, recalling (88), the sufficient conditions under which
D > 0 depend on θ ∈ [δ, π

3 − δ] and ω ∈ [− 1
2 ,

1
2 ]. Indeed, for any b ̸= 0 and s

with 27s− 38b2 > 0 and any θ ∈ [δ, π
3 − δ],

D > 1−O(ε2r−2) + (76b2 − 54s)
1− 4ω2

27s− 38b2
= 1−O(ε2r−2)− 2(1− 4ω2) > 0

if ω2 > 1
2
√
2
+O(ε2r−2). This is consistent with the result (68) for small ε > 0

because σ ∈ R2 as θ → 0.
We summarize the observations of Sε,ω for two regions R3 and R4 in the

following theorem.
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Theorem 4.3. Fix any r > 1. Then for sufficiently small ε > 0, the set of
unstable wave vectors Sε,ω has the following properties.

(a) If 38
27b

2 < s ≤ 2b2, R3 ⊂ Sε,ω with δ = O(εr) for all ω ∈ [− 1
2 ,

1
2 ].

(b) σ = (0, 1) ∈ Sε,ω for all ω ∈ [− 1
2 ,

1
2 ] if

38
27b

2 < s ≤ 70
27b

2. Otherwise,

σ = (0, 1) ∈ Sε,ω for all ω ∈ [− 1
2 ,−

1
2

√
70b2−27s
108b2−54s ) ∪ ( 12

√
70b2−27s
108b2−54s ,

1
2 ].

(c) For any b ̸= 0 and s with 27s − 38b2 > 0, R4 ⊂ Sε,ω with δ = O(εr)
for all ω2 > 1

2
√
2
+O(ε2r−2).
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