DOI QR코드

DOI QR Code

축방향 서브 나이퀴스트 샘플링 기반의 횡탄성 영상 기법

Shear-wave elasticity imaging with axial sub-Nyquist sampling

  • 오우진 (단국대학교 전자전기공학과) ;
  • 윤희철 (단국대학교 전자전기공학과)
  • 투고 : 2023.06.30
  • 심사 : 2023.08.18
  • 발행 : 2023.09.30

초록

탄성 영상과 미세 혈류 도플러 영상과 같은 기능성 초음파 영상은 조직의 기계적, 기능적 정보를 제공함으로써 진단 성능을 향상시킨다. 그러나 기능성 초음파 영상의 구현은 데이터 획득 및 처리 시 대용량 데이터 저장과 같은 한계를 야기한다. 본 논문에서는 효율적인 횡탄성 영상 기법을 위해 데이터 획득 양을 절감시키는 서브 나이퀴스트 접근법을 제안한다. 제안하는 방법은 기존 나이퀴스트 샘플링 속도보다 1/3배 낮은 샘플링 속도로 데이터를 획득하고, 주파수 스펙트럼의 주기성을 이용하여 대역 통과 필터링 기반의 보간을 통해 재구성된 Radio Frequency(RF) 신호를 사용하여 횡파 신호를 추적한다. 이때 RF 신호는 67 % 미만의 비대역폭으로 제한된다. 제안하는 접근법을 검증하기 위해 기존 샘플링 속도로 획득한 횡파 추적 데이터를 이용하여 서브 나이퀴스트 샘플링된 RF 신호를 재현하고, 기존 접근법과 횡파 속도 영상을 재구성한다. 정량적 평가를 위해 재구성한 횡파 속도 영상의 군속도, 대조도 잡음 비, 그리고 구조적 유사성 지수를 비교하였다. 우리는 서브 나이퀴스트 샘플링 기반 횡탄성 영상의 가능성을 정성적, 정량적으로 입증하였고, 향후 실시간 3차원 횡탄성 영상 기술에 유용하게 적용 가능할 것으로 기대된다.

Functional ultrasound imaging, such as elasticity imaging and micro-blood flow Doppler imaging, enhances diagnostic capability by providing useful mechanical and functional information about tissues. However, the implementation of functional ultrasound imaging poses limitations such as the storage of vast amounts of data in Radio Frequency (RF) data acquisition and processing. In this paper, we propose a sub-Nyquist approach that reduces the amount of acquired axial samples for efficient shear-wave elasticity imaging. The proposed method acquires data at a sampling rate one-third lower than the conventional Nyquist sampling rate and tracks shear-wave signals through RF signals reconstructed using band-pass filtering-based interpolation. In this approach, the RF signal is assumed to have a fractional bandwidth of 67 %. To validate the approach, we reconstruct the shear-wave velocity images using shear-wave tracking data obtained by conventional and proposed approaches, and compare the group velocity, contrast-to-noise ratio, and structural similarity index measurement. We qualitatively and quantitatively demonstrate the potential of sub-Nyquist sampling-based shear-wave elasticity imaging, indicating that our approach could be practically useful in three-dimensional shear-wave elasticity imaging, where a massive amount of ultrasound data is required.

키워드

과제정보

이 논문은 2023년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No. 2022-0-00101, ICT 융합 기반의 고기능 실시간 영상가이드 및 치료효과 모니터링을 통한 지능형 고강도집속초음파 치료기기 개발). 이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2022R1C1C1012107). 이 논문은 2023학년도 단국대학교 대학연구비 지원으로 연구되었음(우수 신진교원 지원사업).

참고문헌

  1. D. Cosgrove, F. Piscaglia, J. Bamber, J. Bojunga, J. -M. Correas, O. H. Gilja, A. S. Klauser, I. Sporea, F. Calliada, V. Cantisani, M. D'Onofrio, E. E. Drakonaki, M. Fink, M. Friedrich-Rust, J. Fromageau, R. F. Havre, C. Jenssen, R. Ohlinger, A. Saftoiu, F. Schaefer, and C. F. Dietrich, "EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications," Ultraschall. Med. 34, 238-253 (2013).
  2. L.-H. Guo, S.-J. Wang, H.-X. Xu, L.-P. Sun, Y.-F. Zhang, J.-M. Xu, J. Wu, H.-J. Fu, and X.-H. Xu, "Differentiation of benign and malignant focal liver lesions: value of virtual touch tissue quantification of acoustic radiation force impulse elastography," Med. Oncol. 32, 1-10 (2015).
  3. G. Ferraioli, C. Tinelli, B. Dal Bello, M. Zicchetti, G. Filice, and C. Filice, "Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: A pilot study," Hepatology, 56, 2125-2133 (2012).
  4. A. Evans, P. Whelehan, K. Thomson, K. Brauer, L. Jordan, C. Purdie, D. McLean, L. Baker, S. Vinnicombe, and A. Thompson, "Differentiating benign from malignant solid breast masses: Value of shear wave elastography according to lesion stiffness combined with greyscale ultrasound according to BI-RADS classification," Br. J. Cancer, 107, 224-229 (2012).
  5. T. Shiina, K. R. Nightingale, M. L. Palmeri, T. J. Hall, J. C. Bamber, R. G. Barr, L. Castera, B. I. Choi, Y. -H. Chou, D. Cosgrove, C. F. Dietrich, H. Ding, D. Amy, A. Farrokh, G. Ferraioli, C. Filice, M. Friedrich-Rust, K. Nakashima, F. Schafer, I. Sporea, S. Suzuki, S. Wilson, and M. Kudo, "WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: Basic principles and terminology," Ultrasound Med. Biol. 41, 1126-1147 (2015).
  6. R. M. S. Sigrist, J. Liau, A. El Kaffas, M. C. Chamma, and J. K. Willmann, "Ultrasound elastography: Review of techniques and clinical applications," Theranostics, 7, 1303-1329 (2017).
  7. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, "Shear wave elasticity imaging-A new ultrasonic technology of medical diagnostics," Ultrasound Med. Biol. 24, 1419-1436 (1998). https://doi.org/10.1016/S0301-5629(98)00110-0
  8. G.Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, "Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56, 489-506 (2009).
  9. T. Loupas, J. T. Powers, and R. W. Gill, "An axial velocity estimator for ultrasound blood flow imaging based on a full evaluation of the Doppler equation by means of a two-dimensional autocorrelation approach," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 42, 672-688 (1995). https://doi.org/10.1109/58.393110
  10. G. F. Pinton , J. J. Dahl, and G. E. Trahey, "Rapid tracking of small displacements with ultrasound," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 53, 1103-1117 (2006). https://doi.org/10.1109/TUFFC.2006.1642509
  11. M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, "Quantifying hepatic shear modulus in vivo using acoustic radiation force," Ultrasound Med. Biol. 34, 546-558 (2008).
  12. S. Bae, T.-K. Song, and J. H. Chang, "New shear wave velocity estimation using arrival time differences in orthogonal directions," Proc. IEEE IUS, 1113-1116 (2014).
  13. P.-Y. Chen, T.-H. Yang, L.-C. Kuo, C.-C. Shih, and C.-C. Huang, "Characterization of hand tendons through high-frequency ultrasound elastography," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 67, 37-48 (2020).
  14. P.-Y. Chen, C.-C. Shih, W.-C. Lin, T. Ma, Q. Zhou, K.K. Shung, and C.-C. Huang, "High-resolution shear wave imaging of the human cornea using a dual-element transducer," Sensors, 18, 4244 (2018).
  15. J. Provost, C. Papadacci, J. E. Arango, M. Imbault, M. Fink, J. -L. Gennisson, M. Tanter, and M. Pernot, "3D ultrafast ultrasound imaging in vivo," Phys. Med. Biol. 59, L1-L13 (2014). https://doi.org/10.1088/0031-9155/59/19/L1
  16. J.-l. Gennisson, J. Provost, T. Deffieux, C. Papadacci, M. Imbault, M. Pernot, and M. Tanter, "4-D ultrafast shear-wave imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 62, 1059-1065 (2015).
  17. Q. Zeng, M. Honarvar, J. Lobo, C. Schneider, R. Rohling, A. Agarwal, G. Harrison, C. Hu, S. Dianis, J. Jago, and S. E. Salcudean, "3D liver shear wave absolute vibro-elastography with an xMATRIX Array - a healthy volunteer study," Proc. IEEE Int. Ultrason. Symp. 1-9 (2018).
  18. D. Cacko and M. Lewandowski, "Shear wave elastography implementation on a portable research ultrasound system: Initial results," Appl. Sci. 12, 6210-6233 (2022).
  19. N. Wagner, Y. C. Eldar, A. Feuer, G. Danin, and Z. Friedman, "Xampling in ultrasound imaging," Proc. SPIE, 796818 (2011).
  20. P. Kaczkowski, "Bandwidth sampling data acquisition with the vantage system for high frequency transducers," Verasonics White Pap., 2016.
  21. J. Kang, H. Yoon, C. Yoon, and S. Y. Emelianov, "High-frequency ultrasound imaging with sub-nyquist sampling," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 69, 2001-2009 (2022).
  22. Y. H. Yoon, S. Khan, J. Huh, and J. C. Ye, "Efficient b-mode ultrasound image reconstruction from sub-sampled RF data using deep learning," IEEE Trans. Med. Imaging, 38, 325-336 (2019). https://doi.org/10.1109/TMI.2018.2864821
  23. O. Drori, A. Mamistvalov, O. Solomon, and Y. C. Eldar, "Compressed ultrasound imaging: From sub-nyquist rates to super resolution," IEEE BITS the Information Theory Magazine, 1, 27-44 (2021).
  24. A. Burshtein, M. Birk, M. Birk, A. Eilam, A. Kempinski, and Y. C. Eldar, "Sub-nyquist sampling and fourier domain beamforming in volumetric ultrasound imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 63, 703-716 (2016). https://doi.org/10.1109/TUFFC.2016.2535280
  25. C. Madiena, J. Faurie, J. Poree, D. Garcia, D. Garcia, C. Madiena, J. Faurie, and J. Poree, "Color and vector flow imaging in parallel ultrasound with sub-Nyquist sampling," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 65, 795-802 (2018).
  26. M. Mishali and Y. C. Eldar, "Sub-Nyquist sampling," IEEE Signal Process. Magazine, 28, 98-124 (2011).
  27. M. Mishali and Y. C. Eldar, "From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals," IEEE J. Sel. Topics Signal Process. 4, 375-391 (2010). https://doi.org/10.1109/JSTSP.2010.2042414
  28. A. J. Jerri, "The Shannon sampling theorem-Its various extensions and applications: A tutorial review," Proc. IEEE, 65, 1565-1596 (1977).
  29. A. Manduca, D. S. Lake, S. A. Kruse, and R. L. Ehman, "Spatio-temporal directional filtering for improved inversion of MR elastography images," Med. Image Anal. 7, 465-473 (2003).
  30. T. Deffieux, J.-L. Gennisson, J. Bercoff, and M. Tanter, "On the effects of reflected waves in transient shear wave elastography," IEEE Trans. Ultrason. Ferroelect. Freq. Control, 58, 2032-2035 (2011).
  31. H. Yoon, S. R. Aglyamov, and S. Y. Emelianov, "Dual-phase transmit focusing for multiangle compound shear-wave elasticity imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 64, 1439-1449 (2017).
  32. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE Trans. Image Process. 13, 600-612 (2004).
  33. B. Kumar, S. B. Kumar, and C. Kumar, "Development of improved SSIM quality index for compressed medical images," Proc. IEEE 2nd ICIIP, 251-255 (2013).