DOI QR코드

DOI QR Code

초음파-광음향 융합 영상을 위한 투명 초음파 변환기

Optically transparent ultrasound transducers for combined ultrasound and photoacoustic imaging: A review

  • Shunghun Park (Department of Electronic Engineering, Sogang University) ;
  • Jin Ho Chang (Department of Electrical Engineering and Computer Science, DGIST)
  • 투고 : 2023.07.25
  • 심사 : 2023.09.21
  • 발행 : 2023.09.30

초록

초음파 변환기는 광음향 및 초음파 영상 조합과 영상 평가에 있어 필수 구성 요소이다. 그러나 기존의 초음파 변환기는 불투명하여 광음향 영상을 획득하기 위해서는 광이 초음파 변환기를 우회 해야한다. 동축 정렬이 없다면 광 도달 영역이 제한되고 이를 해결하기 위해 복잡한 구성으로 시스템의 부피가 커지는 문제가 있다. 이러한 문제점을 극복하기 위해 광학적으로 투명한 초음파 변환기를 개발하기 위해 다양한 접근 방법이 연구되었다. 기존의 불투명한 초음파 변환기와 다르게 광학적으로 투명한 초음파 변환기는 특정 압전소자와 용도에 맞는 다양한 제작 방법이 존재한다. 본 연구에서 압전소자 기반의 투명 초음파 변환기에 사용되는 재료로 Lithium Niobate(LNO), Lead Magnesium Niobate-Lead Titanate(PMN-PT), Polyvinylidene Difluoride(PVDF)를 사용한 결과를 비교하였다. LNO는 투명 초음파 변환기에서 많이 사용되는 압전소자이고, PMN-PT는 LNO보다 높은 송수신율로 최근 활발히 연구되고 있다. 기존 투명 변환기는 광음향 해상도보다 초음파 해상도가 낮지만, 최근 PVDF를 사용하여 높은 초음파 해상도의 투명 집속초음파 변환기를 제작하고 있다. 이러한 투명 초음파 변환기 제작 결과에 대한 비교 분석을 수행하였다.

Ultrasound transducers are an essential component of combined photoacoustic and ultrasound imaging systems and play an important role in image evaluation. However, ultrasound transducers are opaque; therefore, light must bypass the ultrasound transducer to reach the target point to produce a photoacoustic image. Providing different paths for the optical and acoustic signals results in a complicated system design, increasing the system volume. To overcome these problems, an optically Transparent Ultrasound Transducer (TUT) was developed. Unlike conventional opaque ultrasound transducers, optically TUT can be fabricated by a variety of manufacturing methods and they are suitable for use with specific piezoelectric elements and serve various purposes. In this study, a comparative analysis of the results of using Lithium Niobate (LNO), Lead Magnesium Niobate-Lead Titanate (PMN-PT), and Polyvinylidene Difluoride (PVDF), which are materials used in piezoelectric element-based TUT. LNO is a piezoelectric element widely used in TUT, and PMN-PT has been actively studied recently with a higher transmission and reception rate than LNO. Existing TUT have lower ultrasound resolution than photoacoustic resolution, but they have recently been manufacturing focused TUT with high ultrasound resolution using PVDF. A comparative analysis of the production results of these TUT was performed.

키워드

과제정보

This work was supported by the National Research Foundation of South Korea (NRF) funded by the Ministry of Science and ICT (NRF-2021R1A2C2003538).

참고문헌

  1. A. Carovac, F. Smajlovic, and D. Junuzovic, "Application of ultrasound in medicine," Acta. Inform. Med. 19, 168-171 (2011). https://doi.org/10.5455/aim.2011.19.168-171
  2. M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 (2006).
  3. Mengyang Liu, Zhe Chen, B. Zabihian, C. Sinz, E. Zhang, P. C. Beard, L. Ginner, E. Hoover, M. P. Minneman, R. A. Leitgeb, H. Kittler, and W. Drexler, "Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging," Biomed. Opt. Exp. 7, 3390-3402 (2016).
  4. L. V. Wang and S. Hu, "Photoacoustic tomography: In vivo imaging from organelles to organs," Science, 335, 1458-1462 (2012).
  5. R. Manwar and K. Avanaki, "Manufacturing process of optically transparent ultrasound transducer: A review," IEEE Sensors J. 23, 8080-8093 (2023).
  6. R. Manwar, T. Simpson, A. Bakhtazad, and S. Chowdhury, "Fabrication and characterization of a high frequency and high coupling coefficient CMUT array," Microsyst. Technol. 23, 4965-4977 (2017).
  7. G. W. J. Brodie, Y. Qiu, S. Cochran, G. C. Spalding, and M. P. Macdonald, "Letters: Optically transparent piezoelectric transducer for ultrasonic particle manipulation," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 61, 389-391 (2014).
  8. J. M. Cannata, T. A. Ritter, W.-H. Chen, R. H. Silverman, and K. K. Shung, "Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 50, 1548-1557 (2003).
  9. A. Dangi, S. Agrawal, and S.-R. Kothapalli, "Lithium niobate-based transparent ultrasound transducers for photoacoustic imaging," Opt. Lett. 44, 5326-5329 (2019). https://doi.org/10.1364/OL.44.005326
  10. H. Chen, S. Agrawal, A. Dangi, C. Wible, M. Osman, L. Abune, H. Jia, R. Rossi, Y. Wang, and S.-R. Kothapalli, "Optical-resolution photoacoustic microscopy using transparent ultrasound transducer," Sensors, 19, 5470-5479 (2019). https://doi.org/10.3390/s19245470
  11. S. Park, S. Kang, and J. H. Chang, "Optically transparent focused transducers for combined photoacoustic and ultrasound microscopy," J. Med. Biol. Eng. 40, 707-718 (2020). https://doi.org/10.1007/s40846-020-00536-5
  12. J. Park, B. Park, T. Y. Kim, S. Jung, W. J. Choi, J. Ahn, D. H. Yoon, J. Kim, S. Jeon, D. Lee, U. Yong, J. Jang, W. J. Kim, H. K. Kim, U. Jeong, H. H. Kim, and C. Kim, "Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer," Proc. Natl. Acad. Sci. U.S.A. 118, e1920879118 (2021).
  13. R. Chen, Y. He, J. Shi, C. Yung, J. Hwang, L. V. Wang, and Q. Zhou, "Transparent high-frequency ultrasonic transducer for photoacoustic microscopy application," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 67, 1848-1853 (2020).
  14. S. Mirg, H. Chen, K. L. Turner, K. W. Gheres, J. Liu, B. J. Gluckman, P. J. Drew, and S.-R. Kothapalli, "Awake mouse brain photoacoustic and optical imaging through a transparent ultrasound cranial window," Opt. Lett. 47, 1121-1124 (2022).
  15. J. Park, B. Park, U. Yong, J. Ahn, J. Y. Kim, H. H. Kim, J. Jang, and C. Kim, "Bi-modal near-infrared fluorescence and ultrasound imaging via a transparent ultrasound transducer for sentinel lymph node localization," Opt. Lett. 47, 393-396 (2022).
  16. M. Chen, L. Jiang, C. Cook, Y. Zeng, T. Vu, R. Chen, G. Lu, W. Yang, U. Hoffmann, Q. Zhou, and J. Yao, "High-speed wide-field photoacoustic microscopy using a cylindrically focused transparent high-frequency ultrasound transducer," Photoacoustics, 28, 100417 (2022).
  17. J. Park, B. Park, J. Ahn, D. Kim, J. Y. Kim, H. H. Kim, and C. Kim, "Opto-ultrasound biosensor for wearable and mobile devices realization with a transparent ultrasound transducer," Biomed. Opt. Express, 13, 4684-4692 (2022). https://doi.org/10.1364/BOE.468969
  18. H. Chen, S. Mirg, M. Osman, S. Agrawal, J. Cai, R. Biskowitz, J. Minotto, and S -R. Kothapalli, "A high sensitivity transparent ultrasound transducer based on PMN-PT for ultrasound and photoacoustic imaging," IEEE Sens. Lett. 5, 1-4 (2021).
  19. M. R. Sobhani, K. Latham, J. Brown, and R. J. Zemp, "Bias-sensitive transparent single-element ultrasound transducers using hot-pressed PMN-PT," OSA Continuum, 4, 2606-2614 (2021).
  20. B. Park, M. Han, J. Park, T. Kim, H. Ryu, Y. Seo, W. J. Kim, H. H. Kim, and C. Kim, "A photoacoustic finder fully integrated with a solidstate dye laser and transparent ultrasound transducer," Photoacoustics, 23, 100290 (2021).
  21. C. Fang, H. Hu, and J. Zou, "A focused optically transparent PVDF transducer for photoacoustic microscopy," IEEE Sens. J. 20, 2313-2319 (2020).
  22. C. Fang and J. Zou, "Acoustic-resolution photoacoustic microscopy based on an optically transparent focused transducer with a high numerical aperture," Opt. Lett. 46, 3280-3283 (2021). https://doi.org/10.1364/OL.423287
  23. D. Ren, Y. Sun, J. Shi, and, R. Chen, "A review of transparent sensors for photoacoustic imaging applications," Photonics, 8, 324-342 (2021).
  24. X. Li, J. Li, J. Jing, T. Ma, S. Liang, J. Zhang, D. Mohar, A. Raney, S. Mahon, M. Brenner, P. Patel, K. K. Shung, Q. Zhou, and Z. Chen, "Integrated IVUS-OCT imaging for atherosclerotic plaque characterization," IEEE J. Sel. Top Quantum Electron. 20, 7100108 (2014). https://doi.org/10.1109/JSTQE.2013.2274724
  25. H. Kim, J. Kang, and J. H. Chang, "Thermal therapeutic method for selective treatment of deep-lying tissue by combining laser and high-intensity focused ultrasound energy," Opt. Lett. 39, 2806-2809 (2014).
  26. J. Kim, H. Kim, and J. H. Chang, "Endoscopic probe for ultrasound-assisted photodynamic therapy of deep-lying tissue," IEEE Access. 8, 179745-179753 (2020).
  27. H. Kim, S. Youn, J. Kim, S. Park, M. Lee, J. Y. Hwang and J. H. Chang, "Deep laser microscopy using optical clearing by ultrasound-induced gas bubbles," Nat. Photon. 16, 762-768 (2022).