DOI QR코드

DOI QR Code

Treatment Outcomes of Mandibular Advancement Devices in Mild, Moderate, and Severe Obstructive Sleep Apnea: A Preliminary Study

  • Hye Kyoung Kim (Department of Orofacial Pain and Oral Medicine, College of Dentistry, Dankook University) ;
  • Mee Eun Kim (Department of Orofacial Pain and Oral Medicine, College of Dentistry, Dankook University)
  • Received : 2023.08.28
  • Accepted : 2023.09.11
  • Published : 2023.09.30

Abstract

Purpose: Mandibular advancement devices (MAD) are known to be insufficiently effective in all patients with obstructive sleep apnea (OSA). This study aimed to compare the treatment outcomes of MAD therapy according to OSA severity and to investigate the risk factors for the lack of response to MAD therapy. Methods: A total of 29 patients diagnosed with OSA received an adjustable two-piece MAD treatment. Sleep parameters measured with the home sleep apnea test device, including apnea-hypopnea index (AHI) and oxygen saturation (SpO2), and daytime sleepiness using the Epworth Sleepiness Scale (ESS) were retrospectively assessed both before and after the MAD treatment. Results: The patients were classified into three groups according to AHI severity: mild (n=16, AHI<15), moderate (n=6, 15≤AHI<30), and severe OSA (n=7, AHI≥30). MAD therapy significantly improved the sleep parameters (p<0.001 for AHI and p=0.004 for minimum SpO2) and daytime sleepiness (p<0.001 for ESS). Furthermore, successful outcomes (reduction in AHI>50% and AHI<10 events/h) were achieved in 83.3% and 71.4% of moderate and severe OSA cases, respectively. Of 13 patients with moderate and severe OSA, 10 were classified as responders and 3 as non-responders. The non-responders had significantly lower baseline value of SpO2 (p=0.049 for average SpO2 and p=0.007 for minimum SpO2) and higher baseline AHI (p=0.049) than the responders. Conclusions: The results of the present study suggest that MAD is effective in the majority of patients with OSA of varying severities. The success of MAD therapy does not seem to depend solely on AHI severity. In addition to AHI, minimum SpO2 may be a prognostic measure of the efficacy of MAD treatment in clinical dental practice.

Keywords

References

  1. Jordan AS, McSharry DG, Malhotra A. Adult obstructive sleep apnoea. Lancet 2014;383:736-747. https://doi.org/10.1016/S0140-6736(13)60734-5
  2. Darien IL. International classification of sleep disorders. 3rd ed. American Academy of Sleep Medicine; 2014.
  3. Pattipati M, Gudavalli G, Zin M, et al. Continuous positive airway pressure vs mandibular advancement devices in the treatment of obstructive sleep apnea: an updated systematic review and meta-analysis. Cureus 2022;14:e21759.
  4. Schwartz M, Acosta L, Hung YL, Padilla M, Enciso R. Effects of CPAP and mandibular advancement device treatment in obstructive sleep apnea patients: a systematic review and meta-analysis. Sleep Breath 2018;22:555-568. https://doi.org/10.1007/s11325-017-1590-6
  5. Sutherland K, Cistulli PA. Oral appliance therapy for obstructive seep apnoea: state of the art. J Clin Med 2019;8:2121.
  6. Chen A, Burger MS, Rietdijk-Smulders MAWJ, Smeenk FWJM. Mandibular advancement device: effectiveness and dental side effects. A real-life study. Cranio 2022;40:97-106. https://doi.org/10.1080/08869634.2019.1708610
  7. Lai H, Huang W, Chen W, Wang D. Effectiveness of continuous positive airway pressure versus mandibular advancement device in severe obstructive sleep Apnea patients with mandibular retrognathia: a prospective clinical trial. Ear Nose Throat J 2022;101:606-615. https://doi.org/10.1177/0145561320969251
  8. De Pieri M, Manconi M, Miano S. Mandibular advancement device for severe obstructive sleep apnea: a case report indicating a way to personalize treatment. J Sleep Med 2022;19:83-85. https://doi.org/10.13078/jsm.220009
  9. De Stefani A, Bruno G, Agostini L, Mezzofranco L, Gracco A. Resolution of a severe grade of obstructive sleep apnea syndrome with mandibular advancement device: a case report. Sleep Med Res 2020;11:44-48. https://doi.org/10.17241/smr.2020.00514
  10. Camanes-Gonzalvo S, Bellot-Arcis C, Marco-Pitarch R, et al. Comparison of the phenotypic characteristics between responders and non-responders to obstructive sleep apnea treatment using mandibular advancement devices in adult patients: Systematic review and meta-analysis. Sleep Med Rev 2022;64:101644.
  11. Marklund M. Update on oral appliance therapy for OSA. Curr Sleep Med Rep 2017;3:143-151. https://doi.org/10.1007/s40675-017-0080-5
  12. Edwards BA, Andara C, Landry S, et al. Upper-airway collapsibility and loop gain predict the response to oral appliance therapy in patients with obstructive sleep apnea. Am J Respir Crit Care Med 2016;194:1413-1422. https://doi.org/10.1164/rccm.201601-0099OC
  13. Jang HH, Kim HK, Kim ME, Kim KS. Efficacy of the anteriorly adjustable mandibular advancement device on the treatment of obstructive sleep apnea. J Oral Med Pain 2016;41:7-15. https://doi.org/10.14476/jomp.2016.41.1.7
  14. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 1991;14:540-545. https://doi.org/10.1093/sleep/14.6.540
  15. Ramar K, Dort LC, Katz SG, et al. Clinical practice guideline for the treatment of obstructive sleep apnea and snoring with oral appliance therapy: an update for 2015. J Clin Sleep Med 2015;11:773-827. https://doi.org/10.5664/jcsm.4858
  16. Mickelson SA. Oral appliances for snoring and obstructive sleep apnea. Otolaryngol Clin North Am 2020;53:397-407. https://doi.org/10.1016/j.otc.2020.02.004
  17. Randerath W, Verbraecken J, De Raaff CAL, et al. European Respiratory Society guideline on non-CPAP therapies for obstructive sleep apnoea. Eur Respir Rev 2021;30:210200.
  18. Chowdhuri S, Quan SF, Almeida F, et al. An official American thoracic society research statement: impact of mild obstructive sleep apnea in adults. Am J Respir Crit Care Med 2016;193:e37-e54. https://doi.org/10.1164/rccm.201602-0361ST
  19. Leppanen T, Toyras J, Mervaala E, Penzel T, Kulkas A. Severity of individual obstruction events increases with age in patients with obstructive sleep apnea. Sleep Med 2017;37:32-37. https://doi.org/10.1016/j.sleep.2017.06.004
  20. Malhotra A, Ayappa I, Ayas N, et al. Metrics of sleep apnea severity: beyond the apnea-hypopnea index. Sleep 2021;44:zsab030.
  21. Pevernagie DA, Gnidovec-Strazisar B, Grote L, et al. On the rise and fall of the apnea-hypopnea index: A historical review and critical appraisal. J Sleep Res 2020;29:e13066.
  22. Dundar Y, Saylam G, Tatar EC, Ozdek A, et al. Does AHI value enough for evaluating the obstructive sleep apnea severity? Indian J Otolaryngol Head Neck Surg 2015;67(Suppl 1):16-20. https://doi.org/10.1007/s12070-014-0722-6
  23. Soori R, Baikunje N, D'sa I, Bhushan N, Nagabhushana B, Hosmane GB. Pitfalls of AHI system of severity grading in obstructive sleep apnoea. Sleep Sci 2022;15(Spec 1):285-288. https://doi.org/10.5935/1984-0063.20220001
  24. Won CHJ. When will we ditch the AHI? J Clin Sleep Med 2020;16:1001-1003. https://doi.org/10.5664/jcsm.8594
  25. Won CHJ. The AHI: not all that it's cracked up to be. J Clin Sleep Med 2020;16:1987-1988. https://doi.org/10.5664/jcsm.8818
  26. Koch H, Schneider LD, Finn LA, et al. Breathing disturbances without hypoxia are associated with objective sleepiness in sleep apnea. Sleep 2017;40:zsx152.
  27. Muraja-Murro A, Kulkas A, Hiltunen M, et al. The severity of individual obstruction events is related to increased mortality rate in severe obstructive sleep apnea. J Sleep Res 2013;22:663-669. https://doi.org/10.1111/jsr.12070
  28. Lee CH, Jung HJ, Lee WH, et al. The effect of positional dependency on outcomes of treatment with a mandibular advancement device. Arch Otolaryngol Head Neck Surg 2012;138:479-483. https://doi.org/10.1001/archoto.2012.452
  29. Oksenberg A, Arons E, Nasser K, Vander T, Radwan H. REM-related obstructive sleep apnea: the effect of body position. J Clin Sleep Med 2010;6:343-348. https://doi.org/10.5664/jcsm.27875
  30. Sasao Y, Nohara K, Okuno K, Nakamura Y, Sakai T. Videoendoscopic diagnosis for predicting the response to oral appliance therapy in severe obstructive sleep apnea. Sleep Breath 2014;18:809-815. Erratum in: Sleep Breath 2015;19:419-420. https://doi.org/10.1007/s11325-014-1012-y
  31. Park JW, Almeida FR. Disparities in oxygen saturation and hypoxic burden levels in obstructive sleep apnoea patient's response to oral appliance treatment. J Oral Rehabil 2022;49:633-643. https://doi.org/10.1111/joor.13316
  32. Dewan NA, Nieto FJ, Somers VK. Intermittent hypoxemia and OSA: implications for comorbidities. Chest 2015;147:266-274. https://doi.org/10.1378/chest.14-0500
  33. Azarbarzin A, Ostrowski M, Hanly P, Younes M. Relationship between arousal intensity and heart rate response to arousal. Sleep 2014;37:645-653.
  34. Sata N, Inoshita A, Suda S, et al. Clinical, polysomnographic, and cephalometric features of obstructive sleep apnea with AHI over 100. Sleep Breath 2021;25:1379-1387. https://doi.org/10.1007/s11325-020-02241-8
  35. Zhang L, Wu H, Zhang X, Wei X, Hou F, Ma Y. Sleep heart rate variability assists the automatic prediction of long-term cardiovascular outcomes. Sleep Med 2020;67:217-224. https://doi.org/10.1016/j.sleep.2019.11.1259
  36. Butler MP, Emch JT, Rueschman M, et al. Apnea-hypopnea event duration predicts mortality in men and women in the sleep heart health study. Am J Respir Crit Care Med 2019;199:903-912. https://doi.org/10.1164/rccm.201804-0758OC
  37. Wang N, Meng Z, Ding N, et al. Oxygen desaturation rate as a novel intermittent hypoxemia parameter in severe obstructive sleep apnea is strongly associated with hypertension. J Clin Sleep Med 2020;16:1055-1062. https://doi.org/10.5664/jcsm.8396
  38. De Beeck SO, Dieltjens M, Azarbarzin A, et al. Mandibular advancement device treatment efficacy Is associated with polysomnographic endotypes. Ann Am Thorac Soc 2021;18:511-518. https://doi.org/10.1513/AnnalsATS.202003-220OC
  39. Ahrens A, McGrath C, Hagg U. A systematic review of the efficacy of oral appliance design in the management of obstructive sleep apnoea. Eur J Orthod 2011;33:318-324. https://doi.org/10.1093/ejo/cjq079