DOI QR코드

DOI QR Code

Humidity and Temperature Response Characteristics of Optical Fiber Dislocation Fusion Sensor Coated with Graphene Quantum Dots

  • Dailin Li (College of Science, China University of Petroleum (East China)) ;
  • Xiaodan Yu (College of Science, China University of Petroleum (East China)) ;
  • Ning Wang (College of Science, China University of Petroleum (East China)) ;
  • Wenting Liu (College of Science, China University of Petroleum (East China)) ;
  • Shiqi Liu (College of Science, China University of Petroleum (East China)) ;
  • Liang Xu (College of Science, China University of Petroleum (East China)) ;
  • Dong Fang (College of Science, China University of Petroleum (East China)) ;
  • Huapeng Yu (National Innovation Institute of Defense Technology)
  • Received : 2023.05.15
  • Accepted : 2023.08.10
  • Published : 2023.10.25

Abstract

An optical fiber dislocation fusion humidity sensor coated with graphene quantum dots is investigated. A Mach-Zehnder interferometer is fabricated with three dislocated single-mode fibers with graphene quantum dots coating humidity-sensitive materials. Humidity response experiments showed a good linear response and high sensitivity with easy fabrication and low-cost materials. From 22% to 98% RH, the humidity response sensitivity of the sensor is 0.24 dB/% RH, with 0.9825 linearity. To investigate the cross-response of humidity and temperature, temperature response experiments are conducted. From 30 ℃ to 70 ℃, the results showed 0.02 dB/℃ sensitivity and 0.9824 linearity. The humidity response experimental curve is compared with the temperature experimental curve. The big difference between humidity sensitivity and temperature sensitivity is very helpful to solve the cross-response of humidity and temperature. The influence of temperature fluctuations in humidity measurements is not obvious.

Keywords

Acknowledgement

The Key Deployment Project of the Ocean Science Research Center of the Chinese Academy of Sciences (COM-S2020J11); National Training Program of Innovation and Entrepreneurship for Undergraduates (No. 202211033).

References

  1. E. A. Rashed, S. Kodera, J. Gomez-Tames, and A. Hirata, "Influence of absolute humidity, temperature and population density on COVID-19 spread and decay durations: Multi-prefecture study," Int. J. Environ. Res. Public Health 17, 5354 (2020).
  2. X. Zhao, L.-Y. Wang, C.-Y. Tang, X.-J. Zha, Y. Liu, B.-H. Su, K. Ke, R.-Y. Bao, M.-B. Yang, and W. Yang, "Smart Ti3C2Tx fabric with fast humidity response and joule heating for healthcare and medical therapy applications," ACS Nano 14, 8793-8805 (2020). https://doi.org/10.1021/acsnano.0c03391
  3. A. Popa, M. Hnatiuc, M. Paun, O. Geman, D. J. Hemanth, D. Dorcea, L. H. Son, and S. Ghita, "An intelligent loT-based food quality monitoring approach using low-cost sensors," Symmetry 11, 374-393 (2019). https://doi.org/10.3390/sym11030374
  4. Y. Huang, K. Zhang, S. Yang, and Y. Jin, "A method to measure humidity based on dry-bulb and wet-bulb temperatures," Res. J. Appl. Sci. Eng. Technol. 6, 2984-2987 (2013). https://doi.org/10.19026/rjaset.6.3682
  5. J. He, "The research for the integration of the dry-wet bulb of the temperature and humidity sensor," Chn. New Technol. Prod. 19, 140-141 (2011).
  6. S. Hajian, X. Zhang, P. Khakbaz, S.-M. Tabatabaei, D. Maddipatla, B. B. Narakathu, R. G. Blair, and M. Z. Atashbar, "Development of a fluorinated graphene-based resistive humidity sensor," IEEE Sens. J. 20, 7517-7524 (2020). https://doi.org/10.1109/JSEN.2020.2985055
  7. X. Zhang, D. Maddipatla, A. K. Bose, S. Hajian, B. B. Narakathu, J. D. Williams, and M. Z. Atashbar, "Printed carbon nanotubes-based flexible resistive humidity sensor," IEEE Sens. J. 20, 12592-12601 (2020). https://doi.org/10.1109/JSEN.2020.3002951
  8. J. Boudaden, M. Steinma, H.-E. Endres, A. Drost, I. Eisele, C. Kutter, and P. Muller-Buschbaum, "Polyimide-based capacitive humidity sensor," Sensors 18, 1516 (2018).
  9. R. Alrammouz, J. Podlecki, A. Vena, R. Garcia, P. Abboud, R. Habchi, and B. Sorli, "Highly porous and flexible capacitive humidity sensor based on self-assembled graphene oxide sheets on a paper substrate," Sens. Actuators B: Chem. 298, 126892 (2019).
  10. H. Parangusan, J. Bhadra, Z. Ahmad, S. Mallick, F. Touati, and N. Al-Thani, "Capacitive type humidity sensor based on PANI decorated Cu-ZnS porous microspheres," Talanta 219, 121361 (2020).
  11. R. Tong, Y. Wang, K.-J. Zhao, X. Li, and Y. Zhao, "Surface plasmon resonance optical fiber sensor for relative humidity detection without temperature crosstalk," Opt. Laser Technol. 150, 107951 (2022).
  12. X. Fan, Q. Wang, M. Zhou, F. Liu, H. Shen, Z. Wei, F. Wang, C. Tan, and H. Meng, "Humidity sensor based on a graphene oxide-coated few-mode fiber Mach-Zehnder interferometer," Opt. Express 28, 24682-24692 (2020). https://doi.org/10.1364/OE.390207
  13. M. Hernaez, B. Acevedo, A. G. Mayes, and S. Melendi-Espina, "High-performance optical fiber humidity sensor based on lossy mode resonance using a nanostructured polyethylene-mine and graphene oxide coating," Sens. Actuators B: Chem. 286, 408-414 (2019). https://doi.org/10.1016/j.snb.2019.01.145
  14. S. Pullteap, "Development of an optical fiber based interferometer for small vibration measurements," in Proc. 11th International Conference on Optical Communications and Networks-ICOCN (Pattaya, Thailand, Nov. 28-30, 2012), pp. 1-4.
  15. R.-J. Tong, Y. Zhao, M.-Q. Chen, and Y. Peng, "Relative humidity sensor based on small up-tapered photonic crystal fiber Mach-Zehnder interferometer," Sens. Actuators A: Phys. 280, 24-30 (2018). https://doi.org/10.1016/j.sna.2018.07.024
  16. M. Shao, X. Qiao, H. Fu, H. Li, J. Zhao, and Y. Li, "A Mach-Zehnder interferometric humidity sensor based on waist-enlarged tapers," Opt. Lasers Eng. 52, 86-90 (2014). https://doi.org/10.1016/j.optlaseng.2013.07.023
  17. S. Zhang, X. Dong, T. Li, C. C. Chan, and P. P. Shum, "Simultaneous measurement of relative humidity and temperature with PCF-MZI cascaded by fiber Bragg grating," Opt. Commun. 303, 42-45 (2013). https://doi.org/10.1016/j.optcom.2013.04.008
  18. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science 306, 666-669 (2004). https://doi.org/10.1126/science.1102896
  19. Z. Jiang, Y. Zhang, H. L. Stormer, and P. Kim, "Quantum hall states near the charge-neutral dirac point in graphene," Phys. Rev. Lett. 99, 106802 (2007).
  20. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Commun. 146, 351-355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
  21. A.Vakil and N. Engheta, "Transformation optics using graphene," Science 332, 1291-1294 (2011). https://doi.org/10.1126/science.1202691
  22. G. Chaloeipote, J. Samarnwong, P. Traiwatcharanon, T. Kerdcharoen, and C. Wongchoosuk, "High-performance resistive humidity sensor based on Ag nanoparticles decorated with graphene quantum dots," R. Soc. Open Sci. 8, 210407 (2021).
  23. W. Liu, F. Zhang, X. Yan, F. Wang, X. Zhang, T. Suzuki, Y. Ohishi, and T. Cheng, "Carboxymethyl cellulose/graphene oxide composite film-coated humidity sensor based on thin-core fiber Mach-Zehnder interferometer," IEEE Sens. J. 21, 23767-23775 (2021). https://doi.org/10.1109/JSEN.2021.3115621
  24. Y. Liu, A. Zhou, and L. Yuan, "Sensitivity-enhanced humidity sensor based on helix structure-assisted Mach-Zehnder interference," Opt. Express 27, 35609-35620 (2019). https://doi.org/10.1364/OE.27.035609
  25. Y. Liu, P. Li, N. Zhang, X. Zhang, S. Chen, Z. Liu, J. Guang, and W. Peng, "Fiber-optic evanescent field humidity sensor based on a micro-capillary coated with graphene oxide," Opt. Mater. Express 9, 4418-4428 (2019). https://doi.org/10.1364/OME.9.004418
  26. Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, "Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide," Appl. Phys. Lett. 109, 031107 (2016).
  27. N. Wang, H. Zhang, X. Yu, X. Yin, Y. Li, Y. Du, and D. Li, "Optical fiber Fabry-Perot humidity sensor filled with polyvinyl alcohol," Sens. Mater. 33, 1051-1062 (2021).
  28. S. Marrujo-Garcia, I. Hernandez-Romano, M. Torres-Cisneros, D. A. May-Arrioja, V. P. Minkovich, and D. Monzon-Hernandez, "Temperature-independent curvature sensor based on in-fiber Mach-Zehnder interferometer using hollow-core fiber," J. Lightw. Technol. 38, 4166-4173 (2020).
  29. G. Zhang, X. Wu, Q. Ge, S. Li, W. Zhang, J. Shi, L. Gui, and B. Yu, "Axial strain applied in-fiber Mach-Zehnder interferometer for acceleration measurement," Opt. Express 28, 18596-18606 (2020). https://doi.org/10.1364/OE.391235
  30. J. Hu, L. Shao, G. Gu, X. Zhang, Y. Liu, X. Song, Z. Song, J. Feng, R. Buczynski, M. Smietana, T. Wang, and T. Lang, "Dual Mach-Zehnder interferometer based on side-hole fiber for high-sensitivity refractive index sensing," IEEE Photonics J. 11, 7105513 (2019).
  31. Y. H. Hu, S. M. Sun, and M Mao, "A temperature and refractive index sensor based on multi-core fibers misaligned splicing," J. Optoelectron. Laser 29, 243-248 (2018).
  32. R. Chu, C. Guan, Y. Bo, J. Shi, Z. Zhu, P. Li, J. Yang, and L. Yuan, "All-optical graphene-oxide humidity sensor based on a side-polished symmetrical twin-core fiber Michelson interferometer," Sens. Actuators B: Chem. 284, 623-627 (2019). https://doi.org/10.1016/j.snb.2019.01.011
  33. Y. Zhao, A.-W. Li, Q. Guo, X.-Y. Ming, Y.-Q. Zhu, X.-C. Sun, P. Li, and Y.-S. Yu, "Relative humidity sensor of S fiber taper based on graphene oxide film," Opt. Commun. 450, 147-154 (2019). https://doi.org/10.1016/j.optcom.2019.05.072
  34. P. Wang, K. Ni, B. Wang, Q. Ma, and W. Tian, "Methylcellulose coated humidity sensor based on Michelson interferometer with thin-core fiber," Sens. Actuators A: Phys. 288, 75-78 (2019). https://doi.org/10.1016/j.sna.2019.01.031
  35. P. K. Sainis, O. Prakash, J. Kumar, G. S. Purbia, C. Mukherjee, S. K. Dixit, and S. V. Nakhe, "Relative humidity measurement sensor based on polyvinyl alcohol coated tilted fiber Bragg grating," Meas. Sci. Technol. 32, 125123 (2021).
  36. G. Y. Chen, X. Wu, C. A. Codemard, L. Yu, X. Liu, H. Xu, T. M. Monro, and D. G. Lancaster, "Optical hygrometer using lightsheet skew-ray probed multimode fiber with polyelectrolyte coating," Sens. Actuators B: Chem. 296, 126685 (2019).
  37. M. Shao, L. Han, H. Sun, Y. Liu, and H. Fu, "Humidity sensor based on twin-hole fiber filled with black phosphorus," Proc. SPIE 11209, 112093H (2019).
  38. Y. Li, T. Wu, and M. Yang, "Humidity sensors based on the composite of multi-walled carbon nanotubes and crosslinked polyelectrolyte with good sensitivity and capability of detecting low humidity," Sens. Actuators B: Chem. 203, 63-70 (2014). https://doi.org/10.1016/j.snb.2014.06.085
  39. X. Lv, Y. Li, P. Li, and M. Yang, "A resistive-type humidity sensor based on crosslinked polyelectrolyte prepared by UV irradiation," Sens. Actuators B: Chem. 135, 581-586 (2009). https://doi.org/10.1016/j.snb.2008.10.008
  40. M.-Q. Chen, Y. Zhao, H.-M. Wei, C.-L. Zhu, and S. Krishnaswamy, "3D printed castle style Fabry-Perot microcavity on optical fiber tip as a highly sensitive humidity sensor," Sens. Actuators B: Chem. 328, 128981 (2021).
  41. J. Zhang, X. Shen, M. Qian, Z. Xiang, and X. Hu, "An optical fiber sensor based on polyimide coated fiber Bragg grating for measurement of relative humidity," Opt. Fiber Technol. 61, 102406 (2021).