DOI QR코드

DOI QR Code

Mechanical behaviours of biopolymers reinforced natural soil

  • Zhanbo Cheng (School of Engineering, University of Warwick) ;
  • Xueyu Geng (School of Engineering, University of Warwick)
  • Received : 2022.04.28
  • Accepted : 2023.09.18
  • Published : 2023.10.25

Abstract

The mechanical behaviours of biopolymer-treated soil depend on the formation of soil-biopolymer matrices. In this study, various biopolymers(e.g., xanthan gum (XG), locust bean gum (LBG), sodium alginate (SA), agar gum (AG), gellan gum (GE) and carrageenan kappa gum (KG) are selected to treat three types of natural soil at different concentrations (e.g., 1%, 2% and 3%) and curing time (e.g., 4-365 days), and reveal the reinforcement effect on natural soil by using unconfined compression tests. The results show that biopolymer-treated soil obtains the maximum unconfined compressive strength (UCS) at curing 14-28 days. Although the UCS of biopolymer-treated soil has a 20-30% reduction after curing 1-year compared to the maximum value, it is still significantly larger than untreated soil. In addition, the UCS increment ratio of biopolymer-treated soil decreases with the increase of biopolymer concentration, and there exists the optimum concentration of 1%, 2-3%, 2%, 1% and 2% for XG, SA, LBG, KG and AG, respectively. Meanwhile, the optimum initial moisture content can form uniformly biopolymer-soil matrices to obtain better reinforcement efficiency. Furthermore, the best performance in increasing soil strength is XG following SAand LBG, which are significantly better than AG, KG and GE.

Keywords

Acknowledgement

The authors wish to acknowledge the support from the European Union's Horizon 2020 research and innovation programme Marie Sklodowska-Curie Actions Research and Innovation Staff Exchange (RISE) under grant agreement No. 778360.

References

  1. Andrew, R.M. (2018), "Global CO2 emissions from cement production", Earth Syst. Sci. Data, 10(1), 195-217. https://doi.org/10.5194/essd-10-195-2018.
  2. Arora, N.K., Fatima, T., Mishra, I., Verma, M., Mishra, J. and Mishra, V. (2018), "Environmental sustainability: Challenges and viable solutions", Environ. Sustain., 1(4), 309-340. https://doi.org/10.1007/s42398-018-00038-w.
  3. ASTM D2166 (2016), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, American Society for Testing and Materials, West Conshohocken, Pennsylvania, U.S.A.
  4. ASTM D2487-17 (2017), Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), American Society for Testing and Materials, West Conshohocken, Pennsylvania, U.S.A.
  5. Ayeldeen, M., Negm, A., El-Sawwaf, M. and Gadda, T. (2018), "Laboratory study of using biopolymer to reduce wind erosion", Int. J. Geotech. Eng., 12(3), 228-240. https://doi.org/10.1080/19386362.2016.1264692.
  6. Ayeldeen, M.K., Negm, A.M. and El-Sawwaf, M. (2016), "Evaluating the physical characteristics of biopolymer/soil mixtures", Arab. J. Geosci., 9(5), 1-13. https://doi.org/10.1007/s12517-016-2366-1.
  7. Barak, S. and Mudgil, D. (2014), "Locust bean gum: Processing, properties and food applications-A review", Int. J. Biol. Macromol., 66, 74-80. https://doi.org/10.1016/j.ijbiomac.2014.02.017.
  8. BGS (2022), British Geological Society, Available at: https://www.bgs.ac.uk.
  9. BS 1377-2 (1990), Methods of Test for Soils for Civil Engineering Purposes. Part 2: Classification Tests, British Standards Institution (BSI), London, United Kingdom.
  10. Chang, I. and Cho, G.C. (2012), "Strengthening of Korean residual soil with β-1, 3/1, 6-glucan biopolymer", Constr. Build. Mater., 30, 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030.
  11. Chang, I. and Cho, G.C. (2014), "Geotechnical behavior of a beta-1, 3/1, 6-glucan biopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647. http://doi.org/10.12989/gae.2014.7.6.633.
  12. Chang, I., Im, J., Chung, M.K. and Cho, G.C. (2018), "Bovine casein as a new soil strengthening binder from diary wastes", Constr. Build. Mater., 160, 1-9. https://doi.org/10.1016/j.conbuildmat.2017.11.009.
  13. Chen, C., Wu, L., Perdjon, M., Huang, X. and Peng, Y. (2019), "The drying effect on xanthan gum biopolymer treated sandy soil shear strength", Constr. Build. Mater., 197, 271-279. https://doi.org/10.1016/j.conbuildmat.2018.11.120.
  14. Chen, R., Zhang, L. and Budhu, M. (2013), "Biopolymer stabilization of mine tailings", J. Geotech. Geoenviron. Eng., 139(10), 1802-1807. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000902.
  15. Cheng, Z. and Geng, X. (2021), "Soil consistency and interparticle characteristics of various biopolymer types stabilization of clay", Geomech. Eng., 27(2), 103-113. http://doi.org/10.12989/gae.2021.27.2.103.
  16. Cheng, Z. and Geng, X. (2022), "Laboratory investigation for engineering properties of sodium alginate treated clay", Struct. Eng. Mech., 84(4), 465-477. http://doi.org/10.12989/sem.2022.84.4.465.
  17. Cheng, Z. and Geng, X. (2023), "Investigation of unconfined compressive strength for biopolymer treated clay", Constr. Build. Mater., 385, 131458. https://doi.org/10.1016/j.conbuildmat.2023.131458.
  18. Cheng, Z. and Geng, X. (2023), "Study on engineering properties of xanthan gum reinforced kaolinite", Comput. Concrete, 31(6), 501. http://doi.org/10.12989/cac.2023.31.6.501.
  19. Clarkson, L. and Williams, D. (2021), "An overview of conventional tailings dam geotechnical failure mechanisms", Min., Metal. Expl., 38(3), 1305-1328. https://doi.org/10.1007/s42461-021-00381-3.
  20. Danthurebandara, M., Van Passel, S., Nelen, D., Tielemans, Y. and Van Acker, K. (2012), "Environmental and socio-economic impacts of landfills", Linnaeus Eco-Tech, 2012, 40-52.
  21. DeJong, J.T., Mortensen, B.M., Martinez, B.C. and Nelson, D.C. (2010), "Bio-mediated soil improvement", Ecolog. Eng., 36(2), 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
  22. Feng, Q., Sun, K. and Chen, H.P. (2021), "Reliability-based assessment of high-speed railway subgrade defect", Struct. Eng. Mech., 77(2), 231-243. http://doi.org/10.12989/sem.2021.77.2.231.
  23. Garcia-Ochoa, F., Santos, V.E., Casas, J.A. and Gomez, E. (2000), "Xanthan gum: Production, recovery, and properties", Biotechnol. Adv. 18 (7), 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1.
  24. Harkes, M.P., Van Paassen, L.A., Booster, J.L., Whiffin, V.S. and van Loosdrecht, M.C. (2010), "Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement", Ecolog. Eng., 36(2), 112-117. https://doi.org/10.1016/j.ecoleng.2009.01.004.
  25. Hataf, N., Ghadir, P. and Ranjbar, N. (2018), "Investigation of soil stabilization using chitosan biopolymer", J. Clean. Prod., 170, 1493-1500. https://doi.org/10.1016/j.jclepro.2017.09.256.
  26. Hegde, A. and Sitharam, T.G. (2017), "Experiment and 3D-numerical studies on soft clay bed reinforced with different types of cellular confinement systems", Transp. Geotech., 10, 73-84. https://doi.org/10.1016/j.trgeo.2017.01.001.
  27. Husek, M. and Kala, J. (2018), "Material structure generation of concrete and its further usage in numerical simulations", Struct. Eng. Mech., 68(3), 335-344. http://doi.org/10.12989/sem.2018.68.3.335.
  28. Ibrahim, R.K., Hayyan, M., AlSaadi, M.A., Hayyan, A. and Ibrahim, S. (2016), "Environmental application of nanotechnology: Air, soil, and water", Environ. Sci. Poll. Res., 23(14), 13754-13788. https://doi.org/10.1007/s11356-016-6457-z.
  29. Karmakar, P., Ghosh, T., Sinha, S., Saha, S., Mandal, P., Ghosal, P.K. and Ray, B. (2009), "Polysaccharides from the brown seaweed Padina tetrastromatica: Characterization of a sulfated fucan", Carbohyd. Polym., 78(3), 416-421. https://doi.org/10.1016/j.carbpol.2009.04.039.
  30. Khemissa, M., Mekki, L. and Mahamedi, A. (2018), "Laboratory investigation on the behaviour of an overconsolidated expansive clay in intact and compacted states", Transp. Geotech., 14, 157-168. https://doi.org/10.1016/j.trgeo.2017.12.003.
  31. Koptsik, G.N., Kadulin, M.S. and Zakharova, A.I. (2015), "The effect of technogenic contamination on carbon dioxide emission by soils in the Kola Subarctic", Biol. Bull. Rev., 5(5), 480-492. https://doi.org/10.1134/S2079086415050047.
  32. Kulshreshtha, Y., Schlangen, E., Jonkers, H.M., Vardon, P.J. and Van Paassen, L.A. (2017), "CoRncrete: A corn starch based building material", Constr. Build. Mater., 154, 411-423. https://doi.org/10.1016/j.conbuildmat.2017.07.184.
  33. Kwon, Y.M., Chang, I., Lee, M. and Cho, G.C. (2019), "Geotechnical engineering behavior of biopolymer-treated soft marine soil", Geomech. Eng., 17(3), 453-464. http://doi.org/10.12989/gae.2019.17.3.453.
  34. Latifi, N., Eisazadeh, A., Marto, A. and Meehan, C.L. (2017), "Tropical residual soil stabilization: A powder form material for increasing soil strength", Constr. Build. Mater., 147, 827-836. https://doi.org/10.1016/j.conbuildmat.2017.04.115.
  35. Latifi, N., Horpibulsuk, S., Meehan, C.L., Majid, M., Abd, Z. and Rashid, A.S.A. (2016), "Xanthan gum biopolymer: An eco-friendly additive for stabilization of tropical organic peat", Environ. Earth Sci., 75(9), 1-10. https://doi.org/10.1007/s12665-016-5643-0.
  36. Lazorenko, G., Kasprzhitskii, A., Khakiev, Z. and Yavna, V. (2019), "Dynamic behavior and stability of soil foundation in heavy haul railway tracks: A review", Constr. Build. Mater., 205, 111-136. https://doi.org/10.1016/j.conbuildmat.2019.01.184.
  37. Lee, S., Im, J., Cho, G.C. and Chang, I. (2019), "Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands", Geomech. Eng., 17(5), 445-452. http://doi.org/10.12989/gae.2019.17.5.445.
  38. Li, X., Chen, J., Hu, X., Fu, H., Wang, J. and Geng, X. (2021), "Influence of initial water content and strain rate on remolded yield stress in marine clay", Marine Georesour. Geotechnol., 40(3), 321-328. https://doi.org/10.1080/1064119X.2021.1892246.
  39. Liu, J., Bai, Y., Song, Z., Kanungo, D.P., Wang, Y., Bu, F., Chen, Z. and Shi, X. (2020), "Stabilization of sand using different types of short fibers and organic polymer", Constr. Build. Mater., 253, 119164. https://doi.org/10.1016/j.conbuildmat.2020.119164.
  40. Ni, J., Li, S.S. and Geng, X.Y. (2022), "Mechanical and biodeterioration behaviours of a clayey soil strengthened with combined carrageenan and casein", Acta Geotech., 17(12), 5411-5427. https://doi.org/10.1007/s11440-022-01588-4.
  41. Nugent, R.A., Zhang, G. and Gambrell, R.P. (2009), "Effect of exopolymers on the liquid limit of clays and its engineering implications", Transp. Res. Record, 210(1), 34-43. https://doi.org/10.3141/2101-05.
  42. Park, K. and Kim, D. (2016), "Analysis of homogel uniaxial compression strength on bio grouting material", Mater., 9(4), 244. https://doi.org/10.3390/ma9040244.
  43. Patil, M., Dalal, P.H., Shreedhar, S., Dave, T.N. and Iyer, K.K. (2021), "Biostabilization techniques and applications in civil engineering: State-of-the-Art", Constr. Build. Mater., 309, 125098. https://doi.org/10.1016/j.conbuildmat.2021.125098.
  44. Qureshi, M.U., Chang, I. and Al-Sadarani, K. (2017), "Strength and durability characteristics of biopolymer-treated desert sand", Geomech. Eng., 12(5), 785-801. http://doi.org/10.12989/gae.2017.12.5.785.
  45. Reddy, N.G., Nongmaithem, R.S., Basu, D. and Rao, B.H. (2020), "Application of biopolymers for improving the strength characteristics of red mud waste", Environ. Geotech., 40, 1-20. https://doi.org/10.1680/jenge.19.00018.
  46. Rhein-Knudsen, N., Ale, M.T. and Meyer, A.S. (2015), "Seaweed hydrocolloid production: An update on enzyme assisted extraction and modification technologies", Mar. Drug., 13(6), 3340-3359. https://doi.org/10.3390/md13063340.
  47. Rondonuwu, S.G., Chai, J.C., Cai, Y.Q. and Wang, J. (2016), "Prediction of the stress state and deformation of soil deposit under vacuum pressure", Transp. Geotech., 6, 75-83. https://doi.org/10.1016/j.trgeo.2015.09.001.
  48. Saleh, S., Yunus, N.Z.M., Ahmad, K. and Ali, N. (2019), "Improving the strength of weak soil using polyurethane grouts: A review", Constr. Build. Mater., 202, 738-752. https://doi.org/10.1016/j.conbuildmat.2019.01.048.
  49. Seo, H., Park, K., Kwon, M. and Kim, J. (2021), "Sensitivity analysis to determine seismic retrofitting column location in reinforced concrete buildings", Struct. Eng. Mech., 78(1), 77-86. http://doi.org/10.12989/sem.2021.78.1.077.
  50. Smitha, S. and Rangaswamy, K. (2021), "Effect of different parameters on cyclic triaxial response of biopolymer treated soil", Eur. J. Environ. Civil Eng., 26(15), 7645-7663. https://doi.org/10.1080/19648189.2021.2004451.
  51. Soldo, A., Miletic, M. and Auad, M.L. (2020), "Biopolymers as a sustainable solution for the enhancement of soil mechanical properties", Scientif. Report., 10(1), 267. https://doi.org/10.1038/s41598-019-57135-x.
  52. Tran, A.T.P., Chang, I. and Cho, G.C. (2019), "Soil water retention and vegetation survivability improvement using microbial biopolymers in drylands", Geomech. Eng., 17(5), 475-483. http://doi.org/10.12989/gae.2019.17.5.475.
  53. Van de Velde, F. (2008), "Structure and function of hybrid carrageenans", Food Hydrocolloid, 22(5), 727-734. https://doi.org/10.1016/j.foodhyd.2007.05.013.
  54. Van de Velde, K. and Kiekens, P. (2002), "Biopolymers: Overview of several properties and consequences on their applications", Polym. Test., 21(4), 433-442. https://doi.org/10.1016/S0142-9418(01)00107-6.
  55. Van Paassen, L.A., Daza, C.M., Staal, M., Sorokin, D.Y., van der Zon, W. and van Loosdrecht, M.C. (2010), "Potential soil reinforcement by biological denitrification", Ecolog. Eng., 36(2), 168-175. https://doi.org/10.1016/j.ecoleng.2009.03.026.
  56. Whiffin, V.S., Van Paassen, L.A. and Harkes, M.P. (2007), "Microbial carbonate precipitation as a soil improvement technique", Geomicrobiol. J., 24(5), 417-423. https://doi.org/10.1080/01490450701436505.
  57. Yamada, M. and Kametani, Y. (2022), "Preparation of gellan gum-inorganic composite film and its metal ion accumulation property", J. Compos. Sci., 6(2), 42. https://doi.org/10.3390/jcs6020042.