DOI QR코드

DOI QR Code

기판온도가 GZO 투명전도막의 재료평가지수에 미치는 영향

Effects of Substrate Temperature on Figure of Merit of Transparent Conducting GZO Thin Films

  • 신현호 (SL 에너지 ) ;
  • 정양희 (전남대학교 전기 및 반도체공학과) ;
  • 강성준 (전남대학교 전기 및 반도체공학과)
  • 투고 : 2023.08.27
  • 심사 : 2023.10.17
  • 발행 : 2023.10.31

초록

본 연구에서는 펄스 레이저 증착법으로 기판 온도에 따른 GZO(Ga2O3 : 5 wt %, ZnO : 95 wt %) 박막을 유리 기판에 증착하여 전기적 및 광학적 특성을 조사하였다. XRD측정을 통해 기판 온도에 무관하게 모든 GZO 박막이 c 축으로 우선 성장함을 확인할 수 있었고, 300℃ 에서 증착한 GZO 박막이 반가폭 0.38° 로 가장 우수한 결정성을 나타내었다. 기판 온도가 150에서 300℃ 로 증가함에 따라 GZO 박막의 비저항은 감소하는 경향을 보인 반면에 가시광 영역에서의 평균 투과도는 크게 영향을 받지 않는 것으로 조사되었다. 300℃ 에서 증착한 GZO 박막의 재료 평가 지수가 2.05×104-1·cm-1 로 가장 우수한 값을 나타내었고, 이때 비저항과 가시광 영역에서의 평균 투과도는 각각 3.72 × 10-4 Ω·cm 과 87.71 % 이었다. 본 연구를 통해 GZO 박막이 매우 유망한 투명 전도막 재료라는 것을 알 수 있었다.

We prepared GZO (Ga2O3 : 5 wt %, ZnO : 95 wt %) thin film on glass substrate according to the substrate temperature using the pulsed laser deposition method and investigated electrical and optical properties of the thin film. Through the XRD measurements, their were confirmed that all GZO thin films grew preferentially in c-axis and the GZO thin film deposited at 300℃ showed the best crystallinity with a FWHM of 0.38°. As the substrate temperature increased from 150 to 300℃, the resistivity of GZO thin film tend to decrease, while the average transmittance in the visible light region was not significantly affected. The figure of merit of the GZO thin film deposited at 300℃ was 2.05×104-1·cm-1, which was the best value, the resistivity and the average transmittance in the visible light region were 3.72 × 10-4 Ω·cm and 87.71 %, respectively. In this study, it was found that GZO thin film is very promising material for transparent conducting thin film.

키워드

참고문헌

  1. H. Das, R. Das, P. Nandi, S. Biring, and S. Maity, "Influence of Ga-doped transparent conducting ZnO thin film for efficiency enhancement in organic light-emitting diode applications," Appl. Phys. A : Mater. Sci. Process., vol. 127, issue 4, Apr. 2021, pp. 1-7.  https://doi.org/10.1007/s00339-020-04132-x
  2. W. Liu, W. Hsieh, S. Chen, and C. Huang, "Improvement of CIGS solar cells with high performance transparent conducting Ti-doped GaZnO thin films," Sol. Energy, vol. 174, Sept. 2018, pp. 83-96.  https://doi.org/10.1016/j.solener.2018.08.050
  3. N. Yan, C. Zhao, S. You, Y. Zhang, and W. Li, "Recent progress of thin-film photovoltaics for indoor application," Chin. Chem. Lett., vol. 31, issue 3, Mar. 2020, pp. 643-653.  https://doi.org/10.1016/j.cclet.2019.08.022
  4. Y. Joung and S. Kang, "Characteristics of ITZO thin films according to substrate types for thin film solar cells," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 6, Dec. 2021, pp. 1095- 1100. 
  5. C. Wronski, B. Roedern, and A. Kolodziej, "Thin-film Si:H-based solar cells," Vacuum, vol. 82, issue 10, June 2008, pp. 1145-1150.  https://doi.org/10.1016/j.vacuum.2008.01.043
  6. C. Lee, J. Kang, and H. Kim, "Electrical resistivity and transmittance properties of Al and Ga-codoped ZnO thin films," J. Korean Phys. Soc., vol. 56, no. 2, Feb. 2010, pp. 576-579.  https://doi.org/10.3938/jkps.56.576
  7. Z. Li, Z. Chen, W. Huang, S. Chang, and X. Ma, "The transparence comparison of Ga- and Al-doped ZnO thin films," Appl. Surf. Sci., vol. 257, issue 20, Aug. 2011, pp. 8486-8489.  https://doi.org/10.1016/j.apsusc.2011.04.138
  8. Y. Chung, Y. Joung, and S. Kang, "Electrical and optical properties of ITO thin films with various thicknesses of SiO2 buffer layer for capacitive touch screen panel," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 6, Dec. 2022, pp. 1069- 1074. 
  9. Y. Zou, H. Yang, H. Wang, D. Lou, C. Tu, and Y. Zhang, "Microstructure, optical and photo -luminescence properties of Ga-doped ZnO films prepared by pulsed laser deposition," Physica B : Condens. Matter, vol. 414, no. 1, Apr. 2013, pp. 7-11.  https://doi.org/10.1016/j.physb.2012.12.043
  10. Z. Ng, K. Chan, C. Low, S. Kamaruddin, and M. Sahdan, "Al and Ga doped ZnO films prepared by a sol-gel spin coating technique," Ceram. Int., vol. 41, July 2015, pp. S254-S258.  https://doi.org/10.1016/j.ceramint.2015.03.183
  11. H. Mahdhi, S. Alaya, J. Gauffier, K. Djessas, and Z. Ayadi, "Influence of thickness on the structural, optical and electrical properties of Ga-doped ZnO thin films deposited by sputtering magnetron," J. Alloys Compd., vol. 695, no. 25, Feb. 2017, pp. 697-703.  https://doi.org/10.1016/j.jallcom.2016.11.117
  12. H. An, H. Ahn, and J. Park, "High-quality, conductive, and transparent Ga-doped ZnO films grown by atmospheric-pressure chemical-vapor deposition," Ceram. Int., vol. 41, issue 2, Mar. 2015, pp. 2253-2259.  https://doi.org/10.1016/j.ceramint.2014.10.028
  13. J. Bruncko, P. Sutta, M.e Netrvalova, M. Michalka, and A. Vincze, "Pulsed laser deposition of Ga doped ZnO films - Influence of deposition temperature and laser pulse frequency on structural, optical and electrical properties," Vacuum, vol. 159, Jan. 2019, pp. 134-140.  https://doi.org/10.1016/j.vacuum.2018.10.031
  14. J. Kim, J. Lee, J. Lim, J. Kim, and S. Yun, "High-performance transparent conducting Ga-doped ZnO films deposited by RF magnetron sputter deposition," Jpn. J. Appl. Phys., vol. 49, Apr. 2010, pp. 04DP09-1-04DP09-4. 
  15. Y. Auyoong, P. Yap, X. Huang, and S. Hamid, "Optimization of reaction parameters in hydrothermal synthesis: a strategy towards the formation of CuS hexagonal plates," Chem. Cent. J., vol. 7, Dec. 2013, pp. 1-12. https://doi.org/10.1186/1752-153X-7-1