DOI QR코드

DOI QR Code

DSP based Real-Time Fault Determination Methodology using Artificial Neural Network in Smart Grid Distribution System

스마트 그리드 배전계통에서 인공신경회로망을 이용한 DSP 기반 실시간 고장 판단 방법론 기초 연구

  • 김진언 (남서울대학교 전자공학과) ;
  • 이유림 (남서울대학교 전자공학과) ;
  • 최정우 (남서울대학교 전자공학과) ;
  • 노병훈 (남서울대학교 전자공학과) ;
  • 고윤석 (남서울대학교 전자공학과)
  • Received : 2023.06.26
  • Accepted : 2023.10.17
  • Published : 2023.10.31

Abstract

In this paper, a fault determination methodology based on an artificial neural network was proposed to protect the system from faults on the lines in the smart grid distribution system. In the proposed methodology, first, it was designed to determine whether there is a low impedance line fault (LIF) based on the magnitude of the current RMS value, and if it is determined to be a normal current, it was designed to determine whether a high impedance ground fault (HIF) is present using Normal/HIF classifier based on artificial neural network. Among repetitive DSP module-based algorithm verification tests, the normal/HIF classifier recognized the current waveform as normal and did not show reclosing operation for the cases of normal state current waveform simulation test where the RMS value was smaller than the minimum operating current value. On the other hand, for the cases of LIF where RMS value is greater than the minimum operating current value, the validity of the proposed methodology could be confirmed by immediately recognizing it as a fault state and showing reclosing operation according to the prescribed procedure.

본 논문에서는 스마트 그리드 배전 계통에서 선로상의 고장으로부터 계통을 보호하기 위한 인공 신경 회로망을 기반으로 하는 고장 판단 방법론을 제안하였다. 제안된 방법론에서는 먼저 전류 실효값 크기를 기반으로 일반 고장 여부를 판단하고 다음, 정상 전류로 판단되는 경우 인공 신경 회로망을 기반으로 하는 normal/HIF classifier를 이용하여 고 임피던스 지락 고장 여부를 판단하도록 설계하였다. 반복적인 DSP 모듈 기반 알고리즘 검증 시험들 중에서, 실효 값 크기가 최소 동작전류보다 작은 정상 전류 파형 시험인 경우에 normal/HIF classifier가 전류 파형을 정상상태로 인식하여 부 동작하였으며, 반면에, 저 임피던스 고장의 경우는 고장 상태로 인식하여 정해진 절차에 따라 재폐로 동작을 보임으로써 제안된 방법론의 유효성을 확인할 수 있었다.

Keywords

References

  1. B. Lim, J. Lee, H. Nguyen, V. Tran, and Y. Ko, "A Study on the Synchronization Methodology for Grid-connection of Three Phase Inverter," Journal of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 5, Oct. 2019, pp. 951-958.
  2. D. Im, C. Kang, W. Ha, C. Sandagdorj, and Y. Ko, "Development And Application of Three-phase Inverter Output Wave Generator based on SPWM Control to Verify the Performance of LCL filters," Journal of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 5, Oct. 2019, pp. 841-852.
  3. W. Jin, J. Youn, M. Choi, J. Lee, B. Ohgan, and Y. Ko, "Communication Methodology Between Digital FRTUs Based on Wi-Fi Communication for the Smart Grid of Distribution System Area," Journal of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 6, Dec. 2022, pp. 1113-1120.
  4. W. Seo and M. Jun, "A Direction of Convergence and Security of Smart Grid and Information Communication Network," Journal of the Korea Institute of Electronic Communication Sciences, vol. 5, no. 5, Oct. 2010, pp. 477-486.
  5. W. Jin, J. Youn, M.. Choi, J. Lee, B. Ohgan, and Y. Ko, "Communication Methodology Between Digital FRTUs Based on Wi-Fi Communication for the Smart Grid of Distribution System Area," Journal of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 6, Dec. 2022, pp. 1113-1120.
  6. Y. Ko, "A Self-Isolation Method for the HIF Zone under the Network-Based Distribution System," IEEE Trans. Power Delivery, vol. 24, no. 2, Apr. 2009, pp. 884-891. https://doi.org/10.1109/TPWRD.2009.2014482
  7. Y. Ko, T. Kang, H. Park, H. Kim, and H. Nam, "The FRTU-Based Fault-Zone Isolation Method in the Distribution Systems," IEEE Trans. Power Delivery, vol. 25, no. 2, Apr. 2010, pp. 1001-1009. https://doi.org/10.1109/TPWRD.2009.2032051
  8. Y. Ko, "A Study on the Effective Downscaling Methodology for Design of a Micro Smart Grid Simulator," J. Electr. Eng. Technol., vol. 13, no. 4, July 2018, pp. 1425-1437.
  9. Y. Ko, K. Ryu, M. Oh, and H. Yoon, "A Study on the Miniaturization of Protective Device for Micro Smart Grid Simulator," J. Electr. Eng. Technol., vol. 13, no. 4, July 2018, pp. 1425-1437.
  10. Y. Ko, S. Kim, and G. Lim, "Miniaturized Distributed Generation for a Micro Smart Grid Simulator," Energies, vol. 15, no. 4, article 1511, 2022.
  11. Communication Networks and Systems in Substations, IEC 61850, 2003.