DOI QR코드

DOI QR Code

Paraffin-based ramjet missile preliminary design

  • Rogerio L.V. Cruz (Mechanical Engineering Department, University of Brasilia, Campus Darcy Ribeiro) ;
  • Carlos A.G. Veras (Mechanical Engineering Department, University of Brasilia, Campus Darcy Ribeiro) ;
  • Olexiy Shynkarenko (Department of Aerospace Engineering, University of Brasilia)
  • Received : 2023.02.15
  • Accepted : 2023.07.12
  • Published : 2023.07.25

Abstract

This paper presents a basic methodology and a set of numerical tools for the preliminary design of solid-fueled ramjet missiles. An elementary code determines the baseline system configuration comprised of warhead, guidance-control, and propulsion masses and geometries from specific correlations found in the literature. Then, the system is refined with the help of external and internal ballistics codes. Equations of motion are solved for the flight's ascending, cruising, and descending stages and the internal ballistic set of equations designs the ramjet engine based on liquefying fuels. The combined tools sized the booster and the ramjet sustainer engines for a long-range missile, intended to transport 200 kg of payload for more than 300 km range flying near 14,000 m altitude at Mach 3.0. The refined system configuration had 600 mm in diameter and 8,500 mm in length with overall mass of 2,128 kg and 890 kg/m3 density. Ramjet engine propellant mass fraction was estimated as 74%. Increased missile range can be attained with paraffin-polyethylene blend burning at near constant regression rate through primary air mass flow rate control and lateral 2-D air intakes.

Keywords

Acknowledgement

The authors are grateful for the technical support of collaborators of the Chemical Propulsion Laboratory of the University of Brasilia. Also, this study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES)-Finance Code 001.

References

  1. Air-Sol Moyenne Portee-Wikipedia (2023), Air-Sol Moyenne Portee, Wikipedia Foundation, St. Petersburg, USA.
  2. ASTROS (2014), ASTROS 2020 MLRS: Brazil's Industrial Investment in Precision Strike, Defense Industry Daily, Vermont, 
  3. Azevedo, V.A., Alves, I. and Shynkarenko, O. (2019), "Experimental investigation of high regression 1. rate paraffin for solid fuel ramjet propulsion", Proceedings of the AIAA Propulsion and Energy 2019 Forum, Indianapolis, USA, August.
  4. Bertoldi, A.E.M., Veras, C.A.G., Shynkarenko, O., Andrianov A., Lee, J. and Domenico, S. (2022), "Overview of the past and current research on hybrid rocket propulsion at the University of Brasilia", Proceedings of the 9th European Conference for Aeronautics and Space Sciences (EUCASS), Lille, France, June.
  5. Busse, J.R. and Leffler, M.T.A (1996), "Compendium of aerobee sounding rocket launchings from 1959 through 1963", NASA Technical Report TR R-226, Goddard Space Flight Center, Greenbelt,
  6. Buthod, P. (2001), Pressure Vessel Handbook, Pressure Vessel Publishing INC., Tulsa, OK, USA.
  7. Campos, L.M.B.C. and Gil, P.J.S. (2018), "On four new methods of analytical calculation of rocket trajectories", Aerosp., 5(3), 88. https://doi.org/10. 3390/aerospace5030088. https://doi.org/10.3390/aerospace5030088
  8. da Cas, P.L., Veras, C.A., Shynkarenko, O. and Leonardi, R. (2019), "A Brazilian space launch system for the small satellite market", Aerosp., 6(11), 123. https://doi.org/10.3390/aerospace6110123.
  9. da Cas, P.L.K. and Veras, C.A.G. (2012), "An optimized hybrid rocket motor for the SARA platform reentry system", J. Aerosp. Technol. Manage., 4(3), 317-330. https://doi.org/10.5028/jatm.2012.04032312.
  10. Decreto n. 6.703 (2008), Aprova a Estrategia Nacional de Defesa, Presidencia da Republica, Brasilia, Brazil. https://www.planalto.gov.br/ccivil_03/_ato2007-2010/2008/decreto/d6703.htm.
  11. Dutta, D. (2014), "Probabilistic analysis of anti-ship missile defence effectiveness", Def. Sci. J., 64(2), 123-129. https://doi.org/10.14429/dsj.64.3532.
  12. EAM (2021), Earth Atmosphere Model, NASA, Cleveland,
  13. ECSS (2017), System Engineering General Requirements; European Cooperation for Space Standardization, Noordwijk, The Netherlands. https://ecss.nl/standard/ecss-e-st-10c-rev-1-system-engineering-generalrequirements-15-february-2017/
  14. Fleeman, E. (2012), Missile Design and System Engineering, American Institute of Aeronautics and Astronautics, Inc, Reston, VA,
  15. Garcia, A., Yamanaka, S.S.C., Barbosa, A.N., Bizarria, F.C.P., Jung, W. and Scheuerpflug, F. (2011), "VSB-30 sounding rocket: History of flight performance", J. Aerosp. Technol. Manage., 3, 325-330. https://doi.org/10.5028/jatm.2011.03032211
  16. Karabeyoglu, A., Zilliac, G., Cantwell, B.J., DeZilwa, S. and Castellucci, P. (2004), "Scale-up tests of high regression rate paraffin-based hybrid rocket fuels", J. Propuls. Power, 20(6), 1037-1045. https://doi.org/10.2514/1.3340.
  17. Karabeyoglu, M.A., Altman, D. and Cantwell, B.J. (2002), "Combustion of liquefying hybrid propellants: Part 1, General theory", J. Propuls. Power, 18(3), 610-620. https://doi.org/10.2514/2.5975.
  18. Kim, S., Moon, H., Kim, J. and Cho, J. (2015). "Evaluation of paraffin-polyethylene blends as novel solid fuel for hybrid rockets", J. Propuls. Power, 31(6), 1750-1760. https://doi.org/10.2514/1.B35565.
  19. Klein, S.A. and Nellis, G. (2013), Mastering EES, f-Chart Software, Madison, MI, USA
  20. Lesieutre, D., Mendenhall, M., Nazario, S. and Hemsch, M. (1987), "Aerodynamic characteristics of cruciform missiles at high angles of attack", Proceedings of the 25th AIAA Aerospace Sciences Meeting, Reno, United States, March.
  21. Li, W., Chen, X., Zhao, D., Wang, B., Ma, K. and Cai, T. (2020), "Swirling effect on thermodynamic performance in a solid fueled ramjet with paraffin-polyethylene", Aerosp. Sci. Technol., 107, 106341. https://doi.org/10.1016/j.ast.2020.106341.
  22. Martos, J.F.A., Rego, I.S., Laiton, S.N.P., Lima, B.C., Costa, F.J. and Toro, P.G.P. (2017), "Experimental investigation of Brazilian 14-XB hypersonic scramjet aerospace vehicle", Int. J. Aerosp. Eng., 2017, Article ID 5496527. https://doi.org/10.1155/2017/5496527.
  23. MGM-52 (2023), MGM-52 Lance, Wikipedia Foudantion, Inc., San Francisco, USA. https://en.wikipedia.org/wiki/MGM-52_Lance
  24. NASA (2021), Inlet Performance, National Aeronautics and Space Administration, Cleveland, USA.
  25. Neiva, R.Q. (2016), "Tecnica de otimizacao aplicada em projeto conceitual de misseis taticos", M.Sc. Thesis, University of Brasilia, Brasilia.
  26. Nowell Jr., J.B. (1992), "Missile total and subsection weight and size estimation equations", M.Sc. Thesis, Naval Postgraduate School, Monterrey.
  27. Ponomarenko, A. (2014), "RPA-Tool for rocket propulsion analysis", Proceedings of the Space Propulsion Conference, Cologne, Germany, May.
  28. Sidhu, W.P.S. (2007), Looking Back: The Missile Technology Control Regime, Arms Control Today, April.
  29. Struchtrup, H. (2014), Thermodynamics and Energy Conversion, Springer, Berlin, Germany.
  30. Tang, Y., Chen, S., Zhang, W., Shen, DeLuca, L.T. and Ye, Y. (2017), "Mechanical modifications of paraffin-based fuels and the effects on combustion performance", Propell. Explos. Pyrotech., 42, 1268.1277. https://doi.org/10.1002/prep.201700136.
  31. Turns, S.R. (2011), An Introduction to Combustion, McGraw-Hill Education, Godfrey, IL, USA.