DOI QR코드

DOI QR Code

Fabrication and Electrochemical Characterization of Carbon Fluoride-based Lithium-Ion Primary Batteries with Improved Rate Performance Using Oxygen Plasma

산소 플라즈마를 이용하여 율속 성능이 개선된 불화탄소 기반 리튬 일차전지의 제조 및 전기 화학적 특성

  • Seoyeong Cheon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Naeun Ha (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Chaehun Lim (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Seongjae Myeong (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • In Woo Lee (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Young-Seak Lee (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 천서영 (충남대학교 응용화학공학과) ;
  • 하나은 (충남대학교 응용화학공학과) ;
  • 임채훈 (충남대학교 응용화학공학과) ;
  • 명성재 (충남대학교 응용화학공학과) ;
  • 이인우 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2023.08.25
  • Accepted : 2023.09.10
  • Published : 2023.10.10

Abstract

The high-rate performance is limited by several factors, such as polarization generation, low electrical conductivity, low surface energy, and low electrolyte permeability of CFX, which is widely used as a cathode active material in the lithium primary battery. Therefore, in this study, we aimed to improve the battery performance by using carbon fluoride modified by surface treatment using oxygen plasma as a cathode for lithium primary batteries. Through XPS and XRD analysis, changes in the surface chemical characteristics and crystal structure of CFX modified by oxygen plasma treatment were analyzed, and accordingly, the electrochemical characteristics of lithium-ion primary batteries were analyzed and discussed. As a result, the highest number of semi-ionic C-F bonds were formed under the oxygen plasma treatment condition (7.5 minutes) with the lowest fluorine to carbon (F/C) ratio. In addition, the primary cell prepared under this condition using carbon fluoride as the active material of the cathode showed the highest 3 F/C(3 C rate-performance) rate-performance and maintained a relatively high capacity (550 mAh/g) even at high rates. In this study, it was possible to produce lithium primary batteries with high-rate performance by adjusting the fluorine contents of carbon fluoride and the type of carbon-fluorine bonding through oxygen plasma treatment.

일차전지 환원극의 활물질로 널리 사용되고 있는 불화탄소는 낮은 전기 전도도, 표면 에너지 및 전해질 투과도 등의 요인에 의하여 Li/CFX 일차전지의 율속 성능 저하를 초래한다. 따라서 본 연구에서는 산소 플라즈마를 이용한 표면처리를 통하여 표면이 개질된 불화탄소를 리튬 일차전지의 환원극으로 사용하여 전지 성능을 향상시키고자 하였다. XPS 및 XRD 분석을 통해 산소 플라즈마 처리에 의해 변화된 불화탄소의 표면 화학적 특성 및 결정 구조 변화를 분석하였으며, 이에 따른 리튬 일차전지의 전기 화학적 특성에 대한 변화를 분석하고 고찰하였다. 그 결과, 탄소 대 불소비율(F/C) 비율이 가장 낮은 산소 플라즈마 처리 조건(7.5 min)에서 반이온성 C-F 결합이 가장 많이 형성되었다. 또한, 이 조건에서 제조된 불화탄소를 환원극의 활물질로 사용한 일차전지는 가장 높은 3 C의 율속 특성을 보였으며, 고율속에서도 비교적 높은 용량(550 mAh/g)을 유지하였다. 본 연구를 통하여, 산소 플라즈마 처리를 통해 불화탄소의 불소함량 및 탄소-불소 간의 결합 유형을 조정하여 고율속 성능을 가진 리튬 일차전지를 제조할 수 있었다.

Keywords

Acknowledgement

본 연구는 산업통상부/한국산업기술평가관리원의 탄소사업기반조성사업(바인더 및 코팅용 피치를 활용한 음극재용 실리콘산화물인조흑연 복합체 개발: 20006777)에 의하여 수행하였으며 이에 감사드립니다.

References

  1. M. A. Reddy and M. Fichtner, Batteries based on fluoride shuttle, J. Mater. Chem., 21, 17059-17062 (2011). https://doi.org/10.1039/c1jm13535j
  2. A. Hamwi, K. Guerin, and M. Dubois, Fluorine-intercalated graphite for lithium batteries, Fluorinated Materials for Energy Conversion, 1st ed., 369-395, Elsevier, Amsterdam, Netherlands (2005).
  3. R. Hagiwara, M. Lerner, N. Bartlett, and T. Nakajima, A lithium/ C2 F primary battery, J. Electrochem. Soc., 135, 2393 (1988).
  4. N. Sharma, M. Dubois, K. Guerin, V. Pischedda, and S. Radescu, Fluorinated (nano)carbons: CFX electrodes and CFX-based batteries, Energy Technol., 9, 2000605 (2020).
  5. S. Ha, C. Lim, and Y. S. Lee, Fluorination methods and the properties of fluorinated carbon materials for use as lithium primary battery cathode materials, J. Ind. Eng. Chem., 111, 1-17 (2022). https://doi.org/10.1016/j.jiec.2022.03.044
  6. P. Lam and R. Yazami, Physical characteristics and rate performance of (CFX)n (0.33<x<0.66) in lithium batteries, J. Power Sources, 153, 354-359 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.022
  7. G. Zhong, H. Chen, Y. Cheng, L. Meng, H. Liu, Z. Liu, G. Zheng, Y. Xiang, X. Liu, Q. Li, Q. Zhang, H. Yue, C. Lu, and Y. Yang, Insights into the lithiation mechanism of CFX by a joint high-resolution 19F NMR, in situ TEM and 7Li NMR approach, J. Mater. Chem. A, 7, 19793-19799 (2019). https://doi.org/10.1039/C9TA06800G
  8. Z. Luo, X. Wang, D. Chen, Q. Chang, S. Xie, Z. Ma, W. Lei, J. Pan, Y. Pan, and J. Huang, Ultrafast Li/fluorinated graphene primary batteries with high energy density and power density, ACS Appl. Mater. Interfaces, 13, 18809-18820 (2021). https://doi.org/10.1021/acsami.1c02064
  9. Q. Li, W. Xue, X. Sun, X. Yu, H. Li, and L. Chen, Gaseous electrolyte additive BF3 for high-power Li/CFX primary batteries, Energy Storage Mater., 38, 482-488 (2021). https://doi.org/10.1016/j.ensm.2021.03.024
  10. G. Zhong, H. Chen, X. Huang, H. Yue, and C. Lu, High-powerdensity, high-energy-density fluorinated graphene for primary lithium batteries, Front. Chem., 6, 50 (2018).
  11. S. S. Zhang, D. Foster, J. Wolfenstine, and J. Read, Electrochemical characteristic and discharge mechanism of a primary Li/CFX cell, J. Power Sources, 187, 233-237
  12. Y. Peng, Y. Liu, R. Ali, J. Ma, J. Hou, X. Yang, and X. Jian, Air plasma-induced carbon fluoride enabling active CF bonds for double-high energy/power densities of Li/CFX primary battery, J. Alloys Compd., 905, 164151 (2022).
  13. G. Chen, H. Zhou, S. Zhang, Z. Zhang, T. Feng, Z. Xu, and M. Wu, Surface De-fluorination and bond modification of CFX by high-density hydrogen plasma processing, ACS Appl. Energy Mater., 4, 8615-8620 (2021).
  14. B. Sayahpour, H. Hirsh, S. Bai, N. B. Schorr, T. N. Lambert, M. Mayer, W. Bao, D. Cheng, M. Zhang, and K. Leung, Revisiting discharge mechanism of CFX as a high energy density cathode material for lithium primary battery, Adv. Energy Mater., 12, 2103196 (2022).
  15. Y. Ahmad, M. Dubois, K. Guerin, A. Hamwi, and E. Flahaut, High energy density of primary lithium batteries working with sub-fluorinated few walled carbon nanotubes cathode, J. Alloys Compd., 726, 852-859 (2017). https://doi.org/10.1016/j.jallcom.2017.08.001
  16. E. V. Astrova, V. P. Ulin, A. V. Parfeneva, A. M. Rumyantsev, V. B. Voronkov, A. V. Nashchekin, V. N. Nevedomskiy, Y. M. Koshtyal, and M. V. Tomkovich, Silicon-carbon nanocomposites produced by reduction of carbon monofluoride by silicon, J. Alloys Compd., 826, 154242 (2020).
  17. J. Wang, M. Sun, Y. Liu, J. Lin, L. Wang, Z. Xu, W. Wang, Z. Yuan, J. Liu, and X. Bai, Unraveling nanoscale electrochemical dynamics of graphite fluoride by in situ electron microscopy: Key difference between lithiation and sodiation, J. Mater. Chem. A, 8, 6105-6111 (2020). https://doi.org/10.1039/D0TA00093K
  18. Y. Liu, L. Jiang, H. Wang, H. Wang, W. Jiao, G. Chen, P. Zhang, D. Hui, and X. Jian, A brief review for fluorinated carbon: Synthesis, properties, and applications, Nanotechnol. Rev., 8, 573-586 (2019). https://doi.org/10.1515/ntrev-2019-0051
  19. Y. Zhu, L. Zhang, H. Zhao, and Y. Fu, Significantly improved electrochemical performance of CFX promoted by SiO2 modification for primary lithium batteries, J. Mater. Chem. A, 5, 796-803 (2017). https://doi.org/10.1039/C6TA07919A
  20. N. Ha, S. G. Jeong, C. Lim, and Y. S. Lee, Preparation, and electrochemical characteristics of waste-tire char-based CFX for lithium-ion primary batteries, Carbon Lett., 33, 1013-1018 (2023). https://doi.org/10.1007/s42823-023-00488-1
  21. T. I. Jeon, J. H. Son, K. H. An, Y. H. Lee, and Y. S. Lee, Terahertz absorption and dispersion of fluorine-doped single-walled carbon nanotube., J. Appl. Phys., 98, 3 (2005).
  22. K. H. An, K. A. Park, J. G. Heo, J. Y. Lee, K. K Jeon, S. C. Lim, C. W. Yang, Y. S. Lee, and Y. H. Lee, Structural transformation of fluorinated carbon nanotubes induced by in situ electron-beam irradiation, J. Am. Chem. Soc., 125, 10 (2003).
  23. J. Ma, Y. Liu, Y. Peng, X. Yang, J. Hou, C. Liu, Z. Fang, and X. Jian, UV-radiation inducing strategy to tune fluorinated carbon bonds delivering the high-rate Li/CFX primary batteries, Compos. Part B Eng, 230, 109494 (2022).
  24. Z. Fang, Y. Peng, X. Zhou, L. Zhu, Y. Wang, X. Dong, and Y. Xia, Fluorinated carbon materials and the applications in energy storage systems, ACS Appl. Energy Mater., 5, 3966-3978 (2022). https://doi.org/10.1021/acsaem.1c03476
  25. S. S. Zhang, D. Foster, J. Wolfenstine, and J. Read, Electrochemical characteristic and discharge mechanism of a primary Li/CFX cell, J. Power Sources, 187, 233-237
  26. C. Lim, S. Ha, N. Ha, S. G. Jeong, and Y. S. Lee., Plasma treatment of CFX: the effect of surface chemical modification coupled with surface etching, Carbon Lett., Doi: 10.1007/s42823-023-00597-x.2023.09.05.
  27. C. Lim, C. H. Kwak, S. G. Jeong, and Y. S. Lee., Enhanced CO2 adsorption of activated carbon with simultaneous surface etching and functionalization by nitrogen plasma treatment., Carbon Lett., 33, 139-145 (2023). https://doi.org/10.1007/s42823-022-00410-1
  28. S. Myeong, C. Lim, S. Kim, and Y. S. Lee, High-efficiency oil/water separation of hydrophobic stainless steel Mesh filter through carbon and fluorine surface treatment, Korean J. Chem. Eng., 40, 1418-1424 (2023). https://doi.org/10.1007/s11814-022-1330-x
  29. S. H. So, S. Ha, C. G. Min, and Y. S. Lee, Effects of nitrogen plasma treatments on hydrogen storage capacity of microporous carbon at room temperature and its feasibility as a hydrogen storage material, Carbon Lett., 33, 1027-1034 (2023). https://doi.org/10.1007/s42823-023-00524-0
  30. R. Lee, C. Lim, H. Lee, S. Kim, and Y. S. Lee, Visible light photocatalytic activity of TiO2 with carbon-fluorine heteroatoms simultaneously introduced by CF4 plasma., Korean J. Chem. Eng., 39, 3334-3342 (2022). https://doi.org/10.1007/s11814-022-1128-x
  31. J. S. Im, S. J. Park, and Y. S. Lee, The metal-carbon-fluorine system for improving hydrogen storage by using metal and fluorine with different levels of electronegativity, Int. J. Hydrog. Energy, 34, 1423-1428 (2009).