DOI QR코드

DOI QR Code

Conversion of Dimethyl Ether to Light Olefins over a Lead-Incorporated SAPO-34 Catalyst with Hierarchical Structure

  • Kang Song (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Jeong Hyeon Lim (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Young Chan Yoon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Chu Sik Park (Korea Institute of Energy Research) ;
  • Young Ho Kim (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • Received : 2023.08.18
  • Accepted : 2023.09.04
  • Published : 2023.10.10

Abstract

SAPO-34 catalysts were modified with polyethylene glycol (PEG) and Pb to improve their catalytic lifetime and selectivity for light olefins in the conversion of dimethyl ether to olefins (DTO). Hierarchical SAPO-34 catalysts and PbAPSO-34 catalysts were synthesized according to changes in the molecular weight of PEG (M.W. = 1000, 2000, 4000) and the molar ratio of Pb/Al (Pb/Al = 0.0015, 0.0025, 0.0035), respectively. By introducing PEG into the SAPO-34 catalyst crystals, an enhanced volume of mesopores and reduced acidity were observed, resulting in improved catalytic performance. Pb was successfully substituted into the SAPO-34 catalyst frameworks, and an increased BET surface area and concentration of acid sites in the PbAPSO-34 catalysts were observed. In particular, the concentrations of the weak acid sites, which induce a mild reaction, were increased compared with the concentrations of strong acid sites. Then, the P2000-Pb(25)APSO-34 catalyst was prepared by simultaneously utilizing the synthesis conditions for the P2000 SAPO-34 and Pb(25)APSO-34 catalysts. The P2000-Pb(25)APSO-34 catalyst showed the best catalytic lifetime (183 min based on DME conversion > 90%), with an approximately 62% improvement compared to that of the unmodified catalyst (113 min).

Keywords

Acknowledgement

This work was supported by research fund of Chungnam National University.

References

  1. M. A. B. Siddiqui, A. M. Aitani, M. R. Saeed, and S. Al-Khattaf, Enhancing the production of light olefins by catalytic cracking of FCC naphtha over mesoporous ZSM-5 catalyst, Top. Catal., 53, 1387-1393 (2010). https://doi.org/10.1007/s11244-010-9598-1
  2. S. Ilias and A. Bhan, Mechanism of the catalytic conversion of methanol to hydrocarbons, ACS Catal., 3, 18-31 (2013). https://doi.org/10.1021/cs3006583
  3. U. Olsbye, S. Svelle, M. Bjorgen, P. Beato, T. V. W. Janssens, F. Joensen, S.Bordiga, and K. P. Lillerud, Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity, Angew. Chem. Int. Ed., 51, 2-24 (2012). https://doi.org/10.1002/anie.201107584
  4. C. Wang, X. Pan, and X. Bao, Direct production of light olefins from syngas over a carbon nanotube confined iron catalyst, Chin. Sci. Bull., 55, 1117-1119 (2010). https://doi.org/10.1007/s11434-010-0076-8
  5. D. Xiang, Y. Qian, Y. Man, and S. Yang, Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process, Appl. Energy, 113, 639-647 (2014). https://doi.org/10.1016/j.apenergy.2013.08.013
  6. Y. Liu, J. F. Chen, J. Bao, and Y. Zhang, Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas, ACS Catal., 5, 3905-3909 (2015). https://doi.org/10.1021/acscatal.5b00492
  7. G. Seo and B. G. Min, Mechanism of methanol conversion over zeolite and molecular sieve catalysts, Korean Chem. Eng. Res., 44, 329-339 (2006).
  8. J. Lefevere, S. Mullens, V. Meynen, and J. V. Noyen, Structured catalysts for methanol-to-olefins conversion: A review, Chem. Pap., 68, 1143-1153 (2014).
  9. T. Dogu and D. Varisli, Alcohols as alternatives to petroleum for environmentally clean fuels and petrochemicals, Turk. J. Chem., 31, 551-567 (2007).
  10. S. G. Lee, H. S. Kim, Y. H. Kim, E. J. Kang, D. H. Lee, and C. S. Park, Dimethyl ether conversion to light olefins over the SAPO-34/ZrO2 composite catalysts with high lifetime, J. Ind. Eng. Chem., 20, 61-67 (2014). https://doi.org/10.1016/j.jiec.2013.04.026
  11. H. Huang, M. Yu, Q. Zhang, and C. Li, Mechanistic study on the effect of ZnO on methanol conversion over SAPO-34 zeolite, Catal. Commun., 137, 105932 (2020).
  12. E. Aghaei, M. Haghighi, Z. Pazhohniya, and S. Aghamohammadi, One-pot hydrothermal synthesis of nanostructured ZrAPSO-34 powder: Effect of Zr-loading on physicochemical properties and catalytic performance in conversion of methanol to ethylene and propylene, Micropor. Mesopor. Mater., 226, 331-343 (2016). https://doi.org/10.1016/j.micromeso.2016.02.009
  13. D. Zhang, Y. Wei, L. Xu, F. Chang, Z. Liu, S. Meng, B. L. Su, and Z. Liu, MgAPSO-34 molecular sieves with various Mg stoichiometries: Synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins, Micropor. Mesopor. Mater., 116, 684-692 (2008). https://doi.org/10.1016/j.micromeso.2008.06.001
  14. H. S. Kim, S. G. Lee, Y. H. Kim, D. H. Lee, J. B. Lee, and C. S. Park, Improvement of lifetime using transition metal-incorporated SAPO-34 catalysts in conversion of dimethyl ether to light olefins, J. Nanomater., 2013, 679758 (2013).
  15. S. Zhang, Z. Wen, L. Yang, C. Duan, X. Lu, Y. Song, Q. Ge, and Y. Fang, Controllable synthesis of hierarchical porous petal-shaped SAPO-34 zeolite with excellent DTO performance, Micropor. Mesopor. Mater., 274, 220-226 (2019). https://doi.org/10.1016/j.micromeso.2018.08.001
  16. M. Razavian and S. Fatemi, Fabrication of SAPO-34 with tuned mesopore structure, Z. Anorg. Allg. Chem., 640, 1855-1859 (2014). https://doi.org/10.1002/zaac.201400149
  17. F. Schmidt, S. Paasch, E. Brunner, and S. Kaskel, Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction, Micropor. Mesopor. Mater., 164, 214-221 (2012). https://doi.org/10.1016/j.micromeso.2012.04.045
  18. E. J. Kang, D. H. Lee, H. S. Kim, K. H. Choi, C. S. Park, and Y. H. Kim, Conversion of DME to light olefins over mesoporous SAPO-34 catalyst prepared by carbon nanotube template, Appl. Chem. Eng., 25, 34-40 (2014). https://doi.org/10.14478/ace.2013.1093
  19. Q. Sung, N. Wang, G. Guo, X. Chen, and J. Yu, Synthesis of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro- meso-macroporosity showing superior MTO performance, J. Mater. Chem. A, 3, 19783-19789 (2015). https://doi.org/10.1039/C5TA04642D
  20. Q. Sun, Z. Xie, and J. Yu, The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion, Natl. Sci. Rev., 5, 542-558 (2018). https://doi.org/10.1093/nsr/nwx103
  21. Y. Chai, L. Xie, Z. Yu, W. Dai, G. Wu, N. Guan, and L. Li, Lead-containing Beta zeolites as versatile Lewis acid catalysts for the aminolysis of epoxides, Micropor. Mesopor. Mater., 264, 230-239 (2018). https://doi.org/10.1016/j.micromeso.2018.01.033
  22. A. Gungor, R. Genc, and T. Ozdemir, Facile synthesis of semiconducting nanosized 0D and 2D lead oxides using a modified co-precipitation method, J. Turk. Chem. Soc. A: Chem., 4, 1017-1030 (2017).
  23. M. B. Brahim, S. Soukrata, H. B. Ammar, and Y. Samet, Study on anodic oxidation parameters for removal of pesticide imidacloprid on a modified tantalum surface by lead dioxide film, Glob. Nest. J., 22, 48-54 (2020).
  24. K. Mirza, M. Ghadiri, M. Haghighi, and A. Afghan, Hydrothermal synthesize of modified Fe, Ag and K-SAPO-34 nanostructured catalysts used in methanol conversion to light olefins, Micropor. Mesopor. Mater., 260, 155-165 (2018). https://doi.org/10.1016/j.micromeso.2017.10.045
  25. A. Z. Varzaneh, J. Towfighi, and S. Sahebdelfar, Carbon nanotube templated synthesis of metal containing hierarchical SAPO-34 catalysts: Impact of the preparation method and metal avidities in the MTO reaction, Micropor. Mesopor. Mater., 236, 1-12 (2016). https://doi.org/10.1016/j.micromeso.2016.08.027
  26. X. Hu, L. Yuan, S. Cheng, J. Luo, H. Sun, S. Li, L. Li, and C. Wang, GeAPSO-34 molecular sieves: synthesis, characterization and methanol-to-olefins performance, Catal. Commun., 123, 38-43 (2019). https://doi.org/10.1016/j.catcom.2019.02.007
  27. Y. Wang, Z. Wang, C. Sun, H. Chen, H. Li, and H. Li, Performance of methanol-to-olefins catalytic reactions by the addition of PEG in the synthesis of SAPO-34, Trans. Tianjin Univ., 23, 501-510 (2017). https://doi.org/10.1007/s12209-017-0065-y
  28. J. M. Lu, K. T. Ranjit, P. Rungrojchaipan, and L. Kevan, Synthesis of mesoporous aluminophosphate (AlPO) and investigation of zirconium incorporation into mesoporous AlPOs, J. Phys. Chem. B, 109, 9284-9293 (2005).
  29. M. D. Rami, M. Taghizadeh, and H. Akhoundzadeh, Synthesis and characterization of nano-sized hierarchical porous AuSAPO-34 catalyst for MTO reaction: special insight on the influence of TX-100 as a cheap and green surfactant, Micropor. Mesopor. Mater., 285, 259-270 (2019). https://doi.org/10.1016/j.micromeso.2019.05.028
  30. A. Z. Varzaneh, J. Towfighi, and M. S. Moghaddam, Synthesis of zirconium modified hierarchical SAPO-34 catalysts using carbon nanotube template for conversion of methanol to light olefins, Pet. Chem., 60, 204-211 (2020). https://doi.org/10.1134/S0965544120020097
  31. M. H. Engelhard, D. R. Baer, A. H. Gomez, and P. M. A. Sherwood, Introductory guide to backgrounds in XPS spectra and their impact on determining peak intensities, J. Vac. Sci. Technol. A, 38, 063203 (2020).
  32. J. G. Dillard, M. H. Koppelman, D. L. Crowther, C. V. Schenck, J. W.Murray, and L. Balistrieri, X-ray photoelectron spectroscopic (XPS) studies on the chemical nature of metal ions adsorbed on clays and minerals. In: P. H. Tewari (ed.). Adsorption from Aqueous Solutions, 227-240, Springer, Boston, MA (1981)
  33. M. Azuma, Y. Sakai, T. Nishikubo, M. Mizumaki, T. Watanuki, T. Mizokawa, K. Oka, H. Hojo, and M. Naka, Systematic charge distribution changes in Bi- and Pb-3d transition metal perovskites, Dalton Trans., 47, 1371-1377 (2018). https://doi.org/10.1039/C7DT03244G
  34. G. Ping, K. Zheng, Q. Fang, and G. Li, Composite nanostructure of manganese cluster and CHA-type silicoaluminaphosphates: enhanced catalytic performance in dimethylether to light olefins conversion, Nanomaterials, 11, 24 (2021).
  35. C. Sun, Y. Wang, Z. Wang, H. Chen, X. Wang, H. Li, L. Sun, C. Fan, C. Wang, and X. Zhang, Fabrication of hierarchical ZnSAPO-34 by alkali treatment with improved catalytic performance in the methanol-to-olefin reaction, C. R. Chimie, 21, 61-70 (2018). https://doi.org/10.1016/j.crci.2017.11.006
  36. K. Song, Y. C. Yoon, C. S. Park, and Y. H. Kim, Effect of etching treatment of SAPO-34 catalyst on dimethyl ether to olefins reaction, Appl. Chem. Eng., 32, 20-27 (2021).
  37. H. S. Kim, S. G. Lee, K. H. Choi, D. H. Lee, C. S. Park, and Y. H. Kim, Effects of Co/Al and Si/Al molar ratios on DTO (dimethyl ether to olefins) reaction over CoAPSO-34 catalyst, Appl. Chem. Eng., 26, 138-144 (2015). https://doi.org/10.14478/ace.2014.1128
  38. D. Chen, K. Moljord, and A. Holmen, A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts, Micropor. Mesopor. Mater., 164, 239-250 (2012). https://doi.org/10.1016/j.micromeso.2012.06.046
  39. Q. Peng, G. Wang, Z. Wang, R. Jiang, D. Wang, J. Chen, and J. Huang, Tuning hydrocarbon pool intermediates by the acidity of SAPO-34 catalysts for improving methanol-to-olefins reaction, ACS Sustain. Chem. Eng., 6, 16867-16875 (2018). https://doi.org/10.1021/acssuschemeng.8b04210
  40. S. Soltanali and J. T. Darian, Synthesis of mesoporous SAPO-34 catalysts in the presence of MWCNT, CNF, and GO as hard templates in MTO process, Powder Technol., 355, 127-134 (2019). https://doi.org/10.1016/j.powtec.2019.07.008