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Abstract. The classical Hardy Theorem on R states that a function f and its Fourier

transform cannot be simultaneously very small; this fact was generalized by Miyachi in

terms of L1 +L∞ and log+-functions. In this paper, we consider the k-Hankel transform,

which is a deformation of the Hankel transform by a parameter k > 0 arising from Dunkl’s

theory. We study Miyachi’s theorem for the k-Hankel transform on Rd.

1. Introduction

Let Rd be a real d-dimensional Euclidean space with scalar product ⟨x, y⟩ and
norm ∥x∥ =

√
⟨x, x⟩. Let Sd−1 be the unit Euclidean sphere in Rd, ∆ be the Laplace

operator, dµ(x) = (2π)−d/2dx be the normalized Lebesgue measure, Lp(Rd), 1 ≤
p < +∞ be the Lebesgue space with norm ∥f∥p := (

∫
Rd |f |pdµ)1/p, and S(Rd) be

the Schwartz space.
The Euclidian Fourier transform is defined by

Ff(y) = (2π)−d/2

∫
Rd

f(x)e−i⟨x,y⟩dx.

We introduce the real parameters α, β such that α, β > 0 and let f be a measurable
function on R satisfying |f(x)| ≤ λe−αx2

and |F(y)| ≤ λe−βξ2 . The function f
reduces to the null function if αβ ≥ 1

4 . A generalization of Hardy’s theorem is
estabilished by Miyachi in [18] where the following is shown.

If f is a measurable function on R such that

eαx
2

f ∈ L1(R) + L∞(R)

and ∫
R
log+

|F(ξ)e
ξ2

4α |
λ

dξ < ∞,
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where α, λ are two positive constants, then f is a constant multiple of e−αx2

.
A large family of theorems have been investigated in recent years, the most

classical one is Titchmarsh’s theorem [9, 12, 17], which says that a function and
its classical Fourier transform on the real line cannot both be clearly localized. To
be more precise, it is impossible for a non-zero function and its classical Fourier
transform (CFT) to both be small. The notion of smallness have been given many
defintions. See, for example, Hardy’s work in [13], Cowling et al. in [7] and Miyachi
in [18].

In harmonic analysis theory, an important role is played by the following infini-
tisimal generator operator

(1.1) Tk,a := ∥x∥2−a∆k − ∥x∥a, a > 0,

where ∆k is the Dunkl Laplacian given by relation (2.1).
In the last decade, Ben Säıd et al. have generalized in [4] the classical situation by
introducing a generalized integral transform Fk,a, which is defined by

Fk,a := ei
π
2 (

2⟨k⟩+d−a−2
a ) exp

(
πi

2a
Tk,a

)
,

where k is a parameter comes from the Dunkl differential-difference operators, and a
arises from the interpolation of two minimal unitary representations of two different
reductive groups, see [4, 3]. More recently, a convolution structure has been studied
for this transform by the author jointly Negzaoui and Sifi in [5].

The transform Fk,a specialises to various well-known integral transforms:

▶ the classical Fourier transform, [14] (a = 2, k = 0).

▶ the classical Hankel transform, [15] (a = 1, k = 0).

▶ the Dunkl transform, [11] (a = 2, k > 0).

▶ the k-Hankel transform, [1] (a = 1, k > 0).

In this paper, we pin down the last case (k-Hankel transform Fk), we study Miyachi’s
theorem on Rd. Analogous results have been studied by Chouchene et al. in [6] for
the Dunkl transform, Loualid in [16] for the generalized Dunkl transform, by Daher
in [8] for Jacobi-Dunkl transform, and Daher et al. in [10] for which a generalization
of Miyachi’s theorem on Rd is established for the generalized Fourier transforms,
the Chébli-Trimèche and the Dunkl transforms.

We briefly summarize the contents of this paper. In §2, we collect some back-
ground materials for the harmonic analysis associated with the k-Hankel transform
on Rd. In §3, we provide keys lemmas used to prove our main result of Miyachi’s
theorem for the k-Hankel transform.

2. Background for the k-Hankel transform on Rd

Let R ⊂ Rd \0 be a root system, R+ be a positive subsystem of R, G(R) ⊂ O(d)
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be a reflection group formed by reflections σa : a ∈ R, where σa is a reflection with
respect to hyperplane ⟨a, x⟩ = 0, and k : R 7→ R+ be a multiplicity function invariant
under groups G. This is a G-invariant positive homogeneous of degree 2γk − 1,
where

γk =
∑

α∈R+

kα.

Let’s consider the weight and the Dunkl measure given respectively on Rd by

υk(x) = ∥x∥−1
∏

α∈R+

|⟨x, α⟩|2k(α) , dµk(x) = υk(x)dx.

Denote by λk = 2γk + d− 1 the homogeneous dimension of the system.
The Dunkl operators Tj , 1 ≤ j ≤ d on Rd are the first-order differential-

difference operators, introduced by Dunkl in [11] are given by

Tjf(x) = ∂jf(x) +
∑

α∈R+

k(α)
f(x)− f(σαx)

⟨x, α⟩
⟨α, ej⟩, 1 ≤ j ≤ d,

where ∂j denotes the usual partial derivatives and e1, ..., ed the standard basis on
Rd. A fundamental property of these differential-difference operators is their com-
mutativity:

TkTl = TlTk, for 1 ≤ k, l ≤ d.

The Dunkl Laplacian ∆k =

d∑
j=1

T 2
j , is given explicitly for a regular function f , by

(2.1) ∆kf = ∆f +
∑
α∈R

k(α)

(
⟨∇f(x), α⟩

⟨α, x⟩
− f(x)− f(σαx)

⟨α, x⟩2

)
, x ∈ Rd,

where ∇ and ∆ are the classical gradient and Laplacian operators.

2.1. The k-Hankel transform

We define the kernel

Bk(x, y) = Γ

(
λk

2

)
Vk

(
J̃λk

2 −1
(z)
)( y

∥y∥

)
,

with z =
√
2∥x∥∥y∥(1 + ⟨ x

∥x∥ , .⟩). Here, Vk denotes the Dunkl intertwining operator

defined by

(2.2) Vkf(x) =

∫
Rd

f(y)dσx(y), x ∈ Rd,
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where σx is a probability measure on Rd with support in the closed ball B(0, ∥x∥)
of center 0 and radius ∥x∥. The expression in (2.2) is Lebesgue integrable on Rd,

and J̃ν(z) = (
z

2
)νJν(z), Jν being the Bessel function of first kind and index ν.

Let us define the space:

D(Rd) is the space of test functions (that is infinitely differentiable functions f :
Rd 7→ C with compact support contained in Rd).

Let tVk denotes the dual operator of Vk on which is a topological automorphism
of D(Rd). It is defined by: There exists a positive probability measure νy on Rd

with support in the closed ball B(0, ∥x∥) of center 0 and radius ∥x∥ such that

(2.3) tVkf(y) =

∫
Rd

f(x)dνy(x), x ∈ Rd.

Relation (2.3) is also given in terms of the k-Hankel transform and the classical
Fourier transform F by the following relation

(2.4) tVk(f) = F ◦ Fk(f).

The operators Vk and tVk possess the following property : For all f ∈ D(Rd) and
g ∈ E(Rd) we have

(2.5)

∫
Rd

tVk(f)(y)g(y)dy =

∫
Rd

f(x)Vk(g)(x)dµk(x).

If we take g = 1 in (2.5), we obtain

(2.6)

∫
Rd

tVk(f)(y)dy =

∫
Rd

f(x)dµk(x),

Moreover, for all x, y ∈ Rd, the kernel Bk(x, .) possesses the following properties:
For all x, y ∈ Rd, we have

(2.7) Bk(0, y) = 1, |Bk(x, y)| ≤ 1.

(2.8) |∂ν
zBk(x, z)| ≤ ∥x∥|ν|e∥x∥∥ℜez∥,

where

∂ν
z =

∂ν

∂zν1
1 ...∂zνd

d

and |ν| = ν1 + ν2 + ...+ νd.

The kernelBk plays an important role in the development of the k-Hankel transform,
for more details, we refer the reader to [1, 2]. Relation (2.7) asserts that the k-Hankel
transform is well defined for all f ∈ L1(Rd, µk)

(2.9) Fkf(y) = ck

∫
Rd

f(x)Bk(x, y)dµk(x), y ∈ Rd,
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where ck is the Macdonald-Mehta-Selberg integral given by

c−1
k =

∫
Rd

e−∥x∥dµk(x).

We collect some properties of the k-Hankel transform (for more details see [2]).

Proposition 2.1.1.

(i) (Inversion formula) The k-Hankel transform Fk is a topological isomorphism
of S(Rd) and its inverse is given by

F−1
k = Fk.

(ii) (Plancherel Theorem) The k-Hankel transform extends to an isometry of
L2(Rd, µk). In particular, we have

∥Fkf∥L2(Rd,µk) = ∥f∥L2(Rd,µk).

The definition of the k-Hankel transform permets us to define the generalized
translation operator on L2(Rd, µk).
The generalized translation operator f 7→ τky f , y ∈ Rd is defined on L2(Rd, µk) by

Fk(τ
k
y f)(ξ) = Bk(y, ξ)Fk(f)(ξ), ξ ∈ Rd.

It plays the role of the arbitrary translation τky f(.) = f(. − y) in Rd, since the

Euclidean Fourier transform satisfies τ̂ky f(x) = e−i⟨x,y⟩f̂(x).

In the analysis of this translation a particular role is played by the space

Ak(Rd) = {f ∈ L1(Rd, µk)/ Fkf ∈ L1(Rd, µk)}.

Note that Ak(Rd) ⊂ L1 ∩ L∞(Rd, µk) and hence is a subspace of L2(Rd, µκ).
The operator τky satisfies the following properties:

Proposition 2.1.2. Assume that f ∈ Ak(Rd) and g ∈ L1 ∩ L∞(Rd, µk). Then

(i) For every x, y ∈ Rd, we have τky f(x) = τkx f(y).

(ii) For every y ∈ Rd, the operator τky satisfies∫
Rd

τky f(x)g(x)dµk(x) =

∫
Rd

f(x)τky g(x)dµk(x).

A formula of τky f is known, at the moment, only in two cases.

Case 1. G = Z2 (see [1]).
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Case 2. where a formula of τky f is known when f is a radial function in

Ak(Rd)(f(x) = fo(∥x∥)), G being any reflection group(see [2])

τky f(x) =
Γ(λk

2 )

Γ(λk

2 − 1
2 )

Vk

[∫ 1

−1

f0 (⪯ x, y, u; . ⪰)
(
1− u2

)λk
2 − 3

2 du

]
(

y

∥y∥
),

where ⪯ x, y, u; . ⪰= ∥x∥+ ∥y∥ −
√

2∥x∥∥y∥(1 + ⟨ x

∥x∥
, .⟩)u.

According to the positivity of the intertwining operator (2.2) it follows that
τky f(x) ≥ 0 for all y ∈ Rd, f(x) = f0(∥x∥) ≥ 0.

Some properties of τky f (f being radial) follow from this formula. This is col-
lected in the following proposition.

Proposition 2.1.3. (See [2])

(i) For every f ∈ L1
rad(Rd, µk) the subspace of radial functions in L1(Rd, µk), we

have: ∫
Rd

τky f(x)dµk(x) =

∫
Rd

f(x)dµk(x).

(ii) For 1 ≤ p ≤ 2, τky : Lp
rad(Rd, µk) 7→ Lp

rad(Rd, µk), is a bounded operator.

(iii) The generalized translation operator is well defined on L2(Rd, µk) by the
relation

Fk(τ
k
x f)(y) = Bk(x, y)Fkf(y).

2.2. The k-Hankel convolution product

The generalized translation operator can be used to define the k-Hankel convo-
lution product.

Definition 2.2.1. For f, g ∈ L2(Rd, µk), we define the k-Hankel convolution prod-
uct ∗k, by

f ∗k g(x) = ck

∫
Rd

f(y)τkx g(y)dµk(y), x ∈ Rd.

Note that the generalized convolution ∗k is well defined since τkx g ∈ L2(Rd, µk)
and it may be rewrite

f ∗k g(x) = ck

∫
Rd

Fkf(λ)Fkg(λ)Bk(x, λ)dµk(λ), x ∈ Rd.

Let f ∈ L2
rad(R, µk) and g ∈ L2(R, µk). Then∫
Rd

|f ∗k g(x)|2dµk(x) =

∫
Rd

|Fkf(λ)|2|Fkg(λ)|2dµk(λ), x ∈ Rd.
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This convolution has considered by [2]. It satisfies

f ∗k g = g ∗k f ; Fk(f ∗k g) = Fkf · Fkg.

3. Miyachi’s theorem for the k-Hankel transform

Our principal interest in this section is to prove a Miyachi’s theorem associated
with the k-Hankel transform.

Let us denote by P(Rd) is the set of polynomials on Rd.
For all x ∈ Rd, s > 0 the k-Hankel heat kernel qkt is given by

qkt (x) = ckt
−λke−

∥x∥
t , for t > 0

the function qkt is a solution of the heat equation Hku(x, t) = 0 and Hk = Tk,1,
where Tk,1 is the infinitisimal generator operator defined by (1.1). For more details
we refer the reader to [2, 4].

Now, we state our principal theorem of this section.

Theorem 3.1. Let f be a measurable function on Rd such that

(3.1) eα∥x∥f ∈ Lp(Rd, µk) + Lq(Rd, µk)

and

(3.2)

∫
Rd

log+
|Fk(f)(ξ)e

β∥ξ∥|
λ

dξ < ∞

for some constants α, β, λ > 0 and 1 ≤ p, q ≤ +∞.

Case 1. If αβ > 1
4 , then f = 0 a.e.

Case 2. If αβ = 1
4 , then f = Kqkβ(.) with |K| ≤ λ.

Case 3. If αβ < 1
4 , then for all δ ∈]β, 1

α [, if f takes the form f(x) = P (x)qkδ (x), P ∈
P(Rd), the relations (3.1), (3.2) hold. To achieve the proof of Theorem 3.1 we need
the following auxiliary lemmas.

3.1. Auxiliary lemmas

Lemma 3.1.1. Let g ∈ Cd be an entire function, for some positive constants C1

and C2 such that

(3.3) |g(z)| ≤ C1e
C2∥ℜez∥ ∧

∫
Rd

log+ |g(y)|dy < ∞ ⇒ g is a constant.

Proof. Using Fubini’s theorem together with relation (3.3), there is s subset E of
Rd−1 with λ(Ec) = 0 (here λ denote the Lebsegue measure). Such that for all
sequence (xi)2≤i≤d ∈ E,
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∫
Rd

log+ |g(x, (xi)1≤i≤d)|dx < +∞.

Additionally, the function z1 7→ g(z1, (xi)2≤i≤d) is an entire function andO(eC2(ℜz1)
2

)
on C. Then by Miyachi’s Lemma [18, lemma 4], the function g is bounded in C.
Moreover, by using Liouville theorem, we see that for all z1 ∈ C and all sequence
(xi)2≤i≤d ∈ E

g((xi)1≤i≤d) = g(0, (xi)2≤i≤d).

For all (zi)1≤i≤d, the last equality has a sense because g is a continuous function.
Then by induction we infer the result, which furnishes the proof of Lemma 3.1.1.

Lemma 3.1.2. Let r ∈ [1,+∞[, a > 0. Then for h ∈ Lr(Rd, µk), there is a
constant K > 0 such that

(3.4)

(∫
Rd

eαr∥x∥|tVk(e
−α∥y∥h)|rdx

)1/r

≤ K

(∫
Rd

|h(x)|rdµk(x)

)1/r

.

Proof. By means assertion (3.4), one can assert that e−α∥y∥h ∈ L1(Rd, µk). Then
by relations (2.2), (2.5) and (2.6) tVk(e

−a∥y∥h) is defined a.e on Rd. Here two cases
to be discussed:

Case 1. If r ∈ [1,∞[, then∫
Rd

eαr∥x∥|tVk(e
−α∥y∥h)|rdx

≤
∫
Rd

eαr∥x∥
(∫

Rd

e−α∥y∥|h(y)|dνx(y)
)r

dx

≤
∫
Rd

eαr∥x∥
(∫

Rd

|h(y)|rdνx(y)
)(∫

Rd

e−αr′∥y∥|h(y)|dνx(y)
)r/r′

dx,

where r′ is the conjugate exponent of r.
Hence

(3.5)

∫
Rd

e−t∥y∥dνx(y) = Ke−t∥x∥ for t > 0.

According to relation (2.6), we see that∫
Rd

eαr∥x∥|tVk(e
−α∥y∥h)|rdx ≤ K

∫
Rd

tVk(|h|r)(x)dx

= K

∫
Rd

|h(x)|rdµk(x),

which gives the result for the case r ∈ [1,∞[.
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Case 2. If r = +∞, then by relation (3.5), we have

eα∥x∥|tVk(e
−α∥y∥h)(x)| ≤ eα∥x∥tVk(e

−α∥y∥)(x)∥h∥k,∞
= K∥h∥k,∞ < ∞,

which furnishes the case r = +∞, and this infers the result.

Lemma 3.1.3. Let p, q ∈ [1,+∞[ and f a measurable function on Rd, let α > 0
such that

(3.6) eα∥x∥f ∈ Lp(Rd, µk) + Lq(Rd, µk).

Then for all complex number z ∈ Cd, Fk(f)(z), moreover it’s entire, exists K > 0
such that for all z ∈ Cd,

(3.7) |Fk(f)(z)| ≤ Ke
∥v∥
α .

Proof. Using relation (2.8) together with Hölder’s inequality , we infer the relation
(3.6).

For the relation (3.7), observe that relations (3.6) and (2.6) assert that f ∈
L1(Rd, µk), and

tVk(f) ∈ L1(Rd, µk), consequently, by (2.4), for all z = u + iv ∈
Cd, u, v ∈ Rd, we have

Fk(f)(z) =

∫
Rd

tVk(f)(x)e
−i⟨x,z⟩dx.

Using Lemma 3.1.2, we can write

|Fk(f)(z)| ≤
∫
Rd

eα∥x∥|tVk(f)(x)|e−α∥x∥+∥x∥∥v∥dx

≤
∫
Rd

eα∥x∥|tVk(f)(x)|e−α∥y∥dx

with ∥y∥ = ∥x∥(1− ∥v∥).
Relation (3.6) yields that there exists f1 ∈ Lp(Rd, µk) and f2 ∈ Lq(Rd, µk) for which∫

Rd

eα∥x∥|tVk(f)(x)|e−α∥y∥dx ≤ K(∥f1∥k,p + ∥f2∥k,q) < +∞,

which furnishes the proof of Lemma 3.1.3.

Thanks to the tools collected above, we can now prove our theorem.

3.2. Proof of Theorem 3.1

Case 1. αβ > 1
4 . Let h be a function on Rd defined by

g(z) =

(
d∏

i=1

e
zi
α

)
Fk(f)(z)
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g is an entire function belongs to Cd, then according to relation (3.7), we write

(3.8) |g(z)| ≤ Ke
∥u∥
α , for all u ∈ Rd.

Moreover, observe that∫
Rd

log+ |g(y)|dy =

∫
Rd

log+ |e
∥y∥
α Fk(f)(y)|dy

=

∫
Rd

log+
(
eβ∥y∥|Fk(f)(y)|

λ
λe(

1
α−β)∥y∥

)
dy.

For all positive constants a, b > 0 and using the fact that log+ ab ≤ log+ a + b, we
get ∫

Rd

log+ |g(y)|dy =

∫
Rd

log+
(
eβ∥y∥|Fk(f)(y)|

λ

)
dy +

∫
Rd

λe(
1
α−β)∥y∥dy.

Since αβ > 1
4 , relation (3.2) yields that

(3.9)

∫
Rd

log+ |g(y)|dy < +∞.

Relations (3.8) and (3.9) assert that the function g satisfies (3.3), consequently g is
a constant, we have then

Fk(f)(y) = Ke−
∥y∥
α .

Since we have αβ > 1
4 , relation (3.2) makes sense as K = 0, furthermore, the

injectivity of the k-Hankel transform gives that f = 0 a.e.

Case 2. αβ = 1
4 , as in the first case, we have that Fk(f)(y) = Ke−

∥y∥
α . So, (3.2)

holds as |K| ≤ λ. Consequently, we get f = Kqkβ(.) whenever |K| ≤ λ.

Now, it remains the third case when αβ < 1
4 . If f is given like the form

f = Kqkβ(.), then its k-Hankel transform takes the form Fk(f)(y) = P (y)e−δ∥y∥,

then f and Fk(f) satisfy (3.1) and (3.2) for all δ ∈]β, α−1[,

which furnishes the proof of Theorem 3.1. 2
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