DOI QR코드

DOI QR Code

극저온 냉동기를 활용한 기체 수소 예냉 시스템 검증에 관한 연구 Part II: CFD 시뮬레이션

Study on Validity of Pre-cooling System for Hydrogen Gas Using Cryocooler Part II: CFD Simulation

  • 서영민 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 노현우 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 하동우 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 구태형 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 고락길 (한국전기연구원 전기모빌리티연구단 수소전기연구팀)
  • YOUNG MIN SEO (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • HYUN WOO NOH (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • DONG WOO HA (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • TAE HYUNG KOO (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • ROCK KIL KO (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute)
  • 투고 : 2023.08.04
  • 심사 : 2023.10.12
  • 발행 : 2023.10.30

초록

In this study, the computational fluid dynamics (CFD) simulations were conducted to verify the cooling capacity of the cryocooler used for pre-cooling of hydrogen gas. Based on the experimental results, the effect of the flow rate on a copper pipe attached to the bottom of the cryocooler was investigated. In this study, the temperature data was calculated through the change of boundary condition for heat flux in the copper pipe. In addition, the cooling capacity of the cryocooler for pre-cooling hydrogen gas was considered by calculating the cooling temperature according to the flow rate in the certified operating range. Consequently the pre-cooing system for hydrogen gas was validated with a reasonable accuracy through CFD simulations.

키워드

과제정보

이 연구는 2023년도 정부(과학기술정보통신부)의 재원으로 국가과학기술연구회의 지원을 받아 수행된 한국전기연구원 기본 사업임(No. 23A01043). 이 논문은 2023년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(23A02135, 액화수소 저장탱크를 적용한 대용량 수소충전소 전환기술 및 실증).

참고문헌

  1. D. Sun, X. Qiao, Y. Qi, S. Su, and Y. Xu, "Speed up the cooling process of superconducting magnets by applying a large cooling capacity Stirling cryocooler", Cryogenics, Vol. 98, 2019, pp. 87-91, doi: https://doi.org/10.1016/j.cryogenics.2019.01.007. 
  2. X. Pei, A. C. Smith, and M. Barnes, "Superconducting fault current limiters for HVDC systems", Energy Procedia, Vol. 80, 2015, pp. 47-55, doi: https://doi.org/10.1016/j.egypro.2015.11.405. 
  3. S. Zhu, G. Yu, X. Li W. Dai, and E. Luo, "Parametric study of a free-piston Stirling cryocooler capable of providing 350 W cooling power at 80 K", Applied Thermal Engineering, Vol. 174, 2020, pp. 115101, doi: https://doi.org/10.1016/j.applthermaleng.2020.115101. 
  4. C. Wang, A. Olesh, and J. Cosco, "Performance improvement of a large capacity GM cryocooler", IOP Conference Series: Materials Science and Engineering, Vol. 278, 2017, pp. 012166, doi: https://doi.org/10.1088/1757-899X/278/1/012166. 
  5. Y. Shen, D. Liu, L. Liu, C. Qiu, R. Zhuan, and Z. Gan, "Experimental study on a simplified precooled JT cryocooler for liquid hydrogen zero boil-off storage", Applied Thermal Engineering, Vol. 216, 2022, pp. 119087, doi: https://doi.org/10.1016/j.applthermaleng.2022.119087. 
  6. S. W. Karng, N. Garceau, C. M. Lim, J. H. Baik, S. Y. Kim, and I. H. Oh, "Performance of a 5 L liquid hydrogen storage vessel", Journal of Hydrogen and New Energy, Vol. 26, No. 3, 2015, pp. 234-240, doi: https://doi.org/10.7316/KHNES.2015.26.3.234. 
  7. G. D. Nam, H. J. Sung, D. W. Ha, H. W. No, T. H. Koo, R. K. Ko, and M. Park, "Design and analysis of cryogenic cooling system for electric propulsion system using liquid hydrogen", Energies, Vol. 16, No. 1, 2023, pp. 527, doi: https://doi.org/10.3390/en16010527. 
  8. Y. W. Liu, R. J. Wu, P. Yang, T. G. Wang, H. H. Liu, and L. H. Wang, "Parameter study of the injection configuration in a zero boil-off hydrogen storage tank using orthogonal test design", Applied Thermal Engineering, Vol. 109, Pt. A, 2016, pp. 283-294, doi: https://doi.org/10.1016/j.applthermaleng.2016.08.051. 
  9. J. H. Baik and W. U. Notardonato, "Initial test results of laboratory scale hydrogen liquefaction and densification system", AIP Conference Proceedings, Vol. 823, No. 1, 2006, pp. 1530-1537, doi: https://doi.org/10.1063/1.2202577. 
  10. J. H. Baik, S. W. Karng, N. Garceau, Y. H. Jang, C. M. Lim, S. Y. Kim, and I. H. Oh, "Development of 1 L hr-1 scale hydrogen liquefier using Gifford-McMahon (GM) cryocooler", AIP Conference Proceedings, Vol. 1573, No. 1, 2014, pp. 1357-1364, doi: https://doi.org/10.1063/1.4860864. 
  11. C. Qiu, S. Chen, Y. Shen, X. Tao, and Z. Gan, "Numerical and experimental study on a tube-in-tube heat exchanger working at liquid-hydrogen temperature with a large temperature span", International Journal of Heat and Mass Transfer, Vol. 208, 2023, pp. 124089, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2023.124089. 
  12. J. H. Baik, S. W. Karng, H. Kang, N. Garceau, S. Y. Kim, and I. H. Oh, "Design and operation of a small-scale hydrogen liquefier", Journal of Hydrogen and New Energy, Vol. 26, No. 2, 2015, pp. 105-113, doi: https://doi.org/10.7316/KHNES.2015.26.2.105. 
  13. H. Jung, D. Han, W. Yang, and Y. Baek, "A simulation study on the hydrogen liquefaction through compact GM refrigerator", Journal of Hydrogen and New Energy, Vol. 33, No. 5, 2022, pp. 534-540, doi: https://doi.org/10.7316/KHNES.2022.33.5.534. 
  14. D. J. Park, H. M. Chang, and B. H. Kang, "Prediction of liquid amount in hydrogen liquefaction systems using GM refrigerator", Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 11, No. 3, 1999, pp. 349-358. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE00673427. 
  15. H. M. Chang, D. J. Park, and B. H. Kang, "Thermodynamic analysis of hydrogen liquefaction systems using Gifford - McMahon cryocooler", International Journal of Air-Conditioning and Refrigeration, Vol. 8, No. 2, 2000, pp. 39-50. Retrieved from https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE00676927. 
  16. F. Xie, S. Xia, Y. Zhu, Y. Ma, and Y. Li, "Experimental study on small-scale hydrogen liquefaction of 0.5 L/h", Internatio nal Journal of Hydrogen Energy, Vol. 47, No. 90, 2022, pp. 38258-38270, doi: https://doi.org/10.1016/j.ijhydene.2022.08.304. 
  17. D. Deserranno, M. Zagarola, X. Li, and S. Mustafi, "Optimization of a Brayton cryocooler for ZBO liquid hydrogen storage in space", Cryogenics, Vol. 64, 2014, pp. 172-181, doi: https://doi.org/10.1016/j.cryogenics.2014.04.025. 
  18. N. M. Garceau, J. H. Baik, C. M. Lim, S. Y. Kim, I. H. Oh, and S. W. Karng, "Development of a small-scale hydrogen liquefaction system", International Journal of Hydrogen Energy, Vol. 40, No. 35, 2015, pp. 11872-11878, doi: https://doi.org/10.1016/j.ijhydene.2015.06.135. 
  19. Cryomech, "AL600 Gifford-McMahon Cryocooler", Cyromech, 2012. Retrieved from https://bluefors.com/products/gifford-mcmahon-cryocoolers/al600-gifford-mcmahon-cryocooler/.