DOI QR코드

DOI QR Code

H2-O2 재결합 반응을 통한 M/γ-Al2O3 촉매의 산소 제거 성능과 산소 결손이 촉매에 미치는 영향

Oxygen Removal Performance of M/γ-Al2O3 Catalyst through H2-O2 Recombination Reaction and the Effect of Oxygen Vacancies on the Catalyst

  • 김태준 (충남대학교 공과대학 응용화학공학과) ;
  • 푸트라쿠마르 발라 (충남대학교 공과대학 응용화학공학과) ;
  • 신대섭 (충남대학교 공과대학 응용화학공학과) ;
  • 송유정 ((주)더이엔 연구개발부) ;
  • 김성탁 (충남대학교 공과대학 응용화학공학과)
  • TAEJUN KIM (Department of Chemical Engineering and Applied Chemistry, Chungnam National University College of Engineering) ;
  • PUTRAKUMAR BALLA (Department of Chemical Engineering and Applied Chemistry, Chungnam National University College of Engineering) ;
  • DAESEOB SHIN (Department of Chemical Engineering and Applied Chemistry, Chungnam National University College of Engineering) ;
  • YOUJUNG SONG (R&D Division, TheEN Co., Ltd.) ;
  • SUNGTAK KIM (Department of Chemical Engineering and Applied Chemistry, Chungnam National University College of Engineering)
  • 투고 : 2023.09.21
  • 심사 : 2023.10.23
  • 발행 : 2023.10.30

초록

The intermittent nature of renewable energy is a challenge to overcome for safety and stable performance in water electrolysis systems linked to renewable energy. Oxygen removal using the catalyst is suitable for maintaining the oxygen concentration in hydrogen below the explosive level (4%) even in intermittent power supply. Metals such as Pd, Pt, and Ni are expected to be effective materials due to their hydrogen affinity. The oxygen removal performance was compared under high hydrogen concentration conditions by loading on γ-Al2O3 with high reactivity and large surface area. The characteristics of the catalyst before and after the reaction were analyzed through X-ray diffraction, transmission electron microscope, H2-temperature programmed reduction, X-ray photoelectron spectroscope, etc. The Pd catalyst that showed the best performance was able to lower 2% oxygen to less than 5 ppm. Changes in catalyst characteristics after the reaction indicate that oxygen vacancies are related to oxygen removal performance and catalyst deactivation.

키워드

과제정보

본 연구는 2023년도 중소벤처기업부의 기술개발사업(RS-2023-00257435)과 2021년도 교육부의 재원으로 한국연구재단의 지자체-대학 협력기반 지역혁신 사업의(2021RIS-004) 지원을 받아 진행되었으며 이에 감사드립니다.

참고문헌

  1. A. Buttler and H. Spliethoff, "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review", Renewable and Sustainable Energy Reviews, Vol. 82, Pt. 3, 2018, pp. 2440-2454, doi: https://doi.org/10.1016/j.rser.2017.09.003. 
  2. A. Klerke, C. H. Christensen, J. K. Norskov, and T. Vegge, "Ammonia for hydrogen storage: challenges and opportunities", Journal of Materials Chemistry, Vol. 18, No. 20, 2008, pp. 2304-2310, doi: https://doi.org/10.1039/B720020J. 
  3. A. Marshall, B. Borresen, G. Hagen, M. Tsypkin, and R. Tunold, "Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers-reduced energy consumption by improved electrocatalysis", Energy, Vol. 32, No. 4, 2007, pp. 431-436, doi: https://doi.org/10.1016/j.energy.2006.07.014. 
  4. W. Tong, M. Forster, F. Dionigi, S. Dresp, R. S. Erami, P. Strasser, A. J. Cowan, and P. Farras, "Electrolysis of low-grade and saline surface water", Nature Energy, Vol. 5, 2020, pp. 367-377, doi: https://doi.org/10.1038/s41560-020-0550-8. 
  5. O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, and S. Few, "Future cost and performance of water electrolysis: an expert elicitation study", International Journal of Hydrogen Energy, Vol. 42, No. 52, 2017, pp. 30470-30492, doi: https://doi.org/10.1016/j.ijhydene.2017.10.045. 
  6. J. D. Holladay, J. Hu, D. L. King, and Y. Wang, "An overview of hydrogen production technologies", Catalysis Today, Vol. 139, No. 4, 2009, pp. 244-260, doi: https://doi.org/10.1016/j.cattod.2008.08.039. 
  7. P. Nikolaidis and A. Poullikkas, "A comparative overview of hydrogen production processes", Renewable and Sustainable Energy Reviews, Vol. 67, 2017, pp. 597-611, doi: https://doi.org/10.1016/j.rser.2016.09.044. 
  8. C. Kim, G. Kim, and H. Kim, "Analysis of domestic and foreign policy and technology trends for hydrogen industry development", Journal of Hydrogen and New Energy, Vol. 34, No. 2, 2023, pp. 122-131, doi: https://doi.org/10.7316/JHNE.2023.34.2.122. 
  9. H. Lee, B. Lee, M. Byun, and H. Lim, "Economic and environmental analysis for PEM water electrolysis based on replacement moment and renewable electricity resources", Energy Conversion and Management, Vol. 224, 2020, pp. 113477, doi: https://doi.org/10.1016/j.enconman.2020.113477. 
  10. A. Li, Y. Sun, T. Yao, and H. Han, "Earth-abundant transition-metal-based electrocatalysts for water electrolysis to produce renewable hydrogen", Chemistry: A European Journal, Vol. 24, No. 69, 2018, pp. 18334-18355, doi: https://doi.org/10.1002/chem.201803749. 
  11. F. Barbir, "PEM electrolysis for production of hydrogen from renewable energy sources", Solar Energy, Vol. 78, No. 5, 2005, pp. 661-669, doi: https://doi.org/10.1016/j.solener.2004.09.003. 
  12. J. Chi and H. Yu, "Water electrolysis based on renewable energy for hydrogen production", Chinese Journal of Catalysis, Vol. 39, No. 3, 2018, pp. 390-394, doi: https://doi.org/10.1016/S1872-2067(17)62949-8. 
  13. S. Lee, H. S. Cho, W. C. Cho, S. K. Kim, Y. Cho, and C. H. Kim, "Operational durability of three-dimensional Ni-Fe layered double hydroxide electrocatalyst for water oxidation", Electrochimica Acta, Vol. 315, 2019, pp. 94-101, doi: https://doi.org/10.1016/j.electacta.2019.05.088. 
  14. C. Spori, J. T. H. Kwan, A. Bonakdarpour, D. P. Wilkinson, and P. Strasser, "The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation", Angewandte Chemie, Vol. 56, No. 22, 2017, pp. 5994-6021, doi: https://doi.org/10.1002/anie.201608601. 
  15. G. Li, L. Anderson, Y. Chen, M. Pan, and P. Y. A. Chuang, "New insights into evaluating catalyst activity and stability for oxygen evolution reactions in alkaline media", Sustainable Energy & Fuels, Vol. 2, No. 1, 2018, pp. 237-251, doi: https://doi.org/10.1039/C7SE00337D. 
  16. S. Geiger, O. Kasian, A. M. Mingers, S. S. Nicley, K. Haenen, K. J. J. Mayrhofer, and S. Cherevko, "Catalyst stability benchmarking for the oxygen evolution reaction: the importance of backing electrode material and dissolution in accelerated aging studies", ChemSusChem, Vol. 10, No. 21, 2017, pp. 4140-4143, doi: https://doi.org/10.1002/cssc.201701523. 
  17. J. Brauns and T. Turek, "Alkaline water electrolysis powered by renewable energy: a review", Processes, Vol. 8, No. 2, 2020, pp. 248, doi: https://doi.org/10.3390/pr8020248. 
  18. Y. S. Park, "Hydrogen tank explosion kills 2 in Gangneung", The Korea Herald, 2019. Retrieved from https://www.koreaherald.com/view.php?ud=20190523000739#. 
  19. V. Schroder, B. Emonts, H. Janssen, and H. P. Schulze, "Explosion limits of hydrogen/oxygen mixtures at initial pressures up to 200 bar", Chemical Engineering & Technology, Vol. 27, No. 8, 2004, pp. 847-851, doi: https://doi.org/10.1002/ceat.200403174. 
  20. E. Moretti, M. Lenarda, L. Storaro, A. Talon, R. Frattini, S. Polizzi, E. Rodriguez-Castellon, and A. Jimenez-Lopez, "Catalytic purification of hydrogen streams by PROX on Cu supported on an organized mesoporous ceria-modified alumina", Applied Catalysis B: Environmental, Vol. 72, No. 1-2, 2007, pp. 149-156, doi: https://doi.org/10.1016/j.apcatb.2006.10.020. 
  21. A. Martinez-Arias, A. B. Hungria, M. Fernandez-Garcia, J. C. Conesa, and G. Munuera, "Preferential oxidation of CO in a H2-rich stream over CuO/CeO2 and CuO/(Ce,M)Ox (M = Zr, Tb) catalysts", Journal of Power Sources, Vol. 151, 2005, pp. 32-42, doi: https://doi.org/10.1016/j.jpowsour.2005.02.078. 
  22. P. K. Cheekatamarla, W. S. Epling, and A. M. Lane, "Selective low-temperature removal of carbon monoxide from hydrogen-rich fuels over Cu-Ce-Al catalysts", Journal of Power S ources, Vol. 147, No. 1-2, 2005, pp. 178-183, doi: https://doi.org/10.1016/j.jpowsour.2005.01.027. 
  23. Y. Pan, X. Shen, L. Yao, A. Bentalib, and Z. Peng, "Active sites in heterogeneous catalytic reaction on metal and metal oxide: theory and practice", Catalysts, Vol. 8, No. 10, 2018, pp. 478, doi: https://doi.org/10.3390/catal8100478. 
  24. L. Yang, C. Shi, X. He, and J. Cai, "Catalytic combustion of methane over PdO supported on Mg-modified alumina", Applied Catalysis B: Environmental, Vol. 38, No. 2, 2002, pp. 117-125, doi: https://doi.org/10.1016/S0926-3373(02)00034-6. 
  25. A. Barrera, M. Viniegra, P. Bosch, V. H. Lara, and S. Fuentes, "Pd/Al2O3-La2O3 catalysts prepared by sol-180gel: characterization and catalytic activity in the NO reduction by H2", Applied Catalysis B: Environmental, Vol. 34, No. 2, 2001, pp. 97-111, doi: https://doi.org/10.1016/S0926-3373(01)00206-5. 
  26. J. M. Kanervo, M. E. Harlin, A. O. I. Krause, and M. A. Banares, "Characterisation of alumina-supported vanadium oxide catalysts by kinetic analysis of H2-TPR data", Catalysis Today, Vol. 78, No. 1-4, 2003, pp. 171-180, doi: https://doi.org/10.1016/S0920-5861(02)00326-7. 
  27. M. N. Kumar, B. Govindh, and N. Annapurna, "Green synthesis and characterization of platinum nanoparticles using sapindus mukorossi gaertn. Fruit pericarp", Asian Journal of Chemistry, Vol. 29, No. 11, 2017, pp. 2541-2544, doi: https://doi.org/10.14233/ajchem.2017.20842A. 
  28. R. Venu, T. S. Ramulu, S. Anandakumar, V. S. Rani, and C. G. Kim, "Bio-directed synthesis of platinum nanoparticles using aqueous honey solutions and their catalytic applications", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 384, No. 1-3, 2011, pp. 733-738, doi: https://doi.org/10.1016/j.colsurfa.2011.05.045. 
  29. M. Raffi, S. Mehrwan, T. M. Bhatti, J. I. Akhter, A. Hameed, W. Yawar, and M. M. ul Hasan, "Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli", Annals of Microbiology, Vol. 60, 2010, pp. 75-80, doi: https://doi.org/10.1007/s13213-010-0015-6. 
  30. K. Narui, K. Furuta, H. Yata, A. Nishida, Y. Kohtoku, and T. Matsuzaki, "Catalytic activity of PdO/ZrO2 catalyst for methane combustion", Catalysis Today, Vol. 45, No. 1-4, 1998, pp. 173-178, doi: https://doi.org/10.1016/S0920-5861(98)00274-0. 
  31. M. Sun, J. Liu, C. Song, Y. Ogata, H. Rao, X. Zhao, H. Xu, and Y. Q. Chen, "Different reaction mechanisms of ammonia oxidation reaction on Pt/Al2O3 and Pt/CeZrO2 with various Pt states", ACS Applied Materials & Interfaces, Vol. 11, No. 26, 2019, pp. 23102-23111, doi: https://doi.org/10.1021/acsami.9b02128. 
  32. H. Pan, J. Li, J. Lu, G. Wang, W. Xie, P. Wu, and X. Li, "Selective hydrogenation of cinnamaldehyde with PtFex/Al2O3@SBA-15 catalyst: enhancement in activity and selectivity to unsaturated alcohol by Pt-FeOx and Pt-Al2O3@SBA-15 interaction", Journal of Catalysis, Vol. 354, 2017, pp. 24-36, doi: https://doi.org/10.1016/j.jcat.2017.07.026. 
  33. N. E. Nunez, H. P. Bideberripe, M. Mizrahi, J. M. Ramallo-Lopez, M. L. Casella, and G. J. Siri, "CO selective oxidation using Co-promoted Pt/γ-Al2O3 catalysts", International Journal of Hydrogen Energy, Vol. 41, No. 42, 2016, pp. 19005-19013, doi: https://doi.org/10.1016/j.ijhydene.2016.08.170. 
  34. J. Z. Shyu and K. Otto, "Characterization of Pt/γ-alumina catalysts containing ceria", Journal of Catalysis, Vol. 115, No. 1, 1989, pp. 16-23, doi: https://doi.org/10.1016/0021-9517(89)90003-1. 
  35. I. Contreras, G. Perez, and T. Viveros, "The influence of the support on the deactivation behaviour of Pt-Sn reforming catalysts", International Journal of Chemical Reactor Engineering, Vol. 3, No. 1, 2005, pp. 1-14, doi: https://doi.org/10.2202/1542-6580.1257. 
  36. W. P. Dow, Y. P. Wang, and T. J. Huang, "TPR and XRD studies of yttria-doped ceria/γ-alumina-supported copper oxide catalyst", Applied Catalysis A: General, Vol. 190, No. 1-2, 2000, pp. 25-34, doi: https://doi.org/10.1016/S0926-860X(99)00286-0. 
  37. Z. Yaakob, A. Bshish, A. Ebshish, S. M. Tasirin, and F. H. Alhasan, "Hydrogen production by steam reforming of ethanol over nickel catalysts supported on sol gel made alumina: influence of calcination temperature on supports", Materials, Vol. 6, No. 6, 2013, pp. 2229-2239, doi: https://doi.org/10.3390/ma6062229. 
  38. F. Negrier, E. Marceau, M. Che, and D. de Caro, "Role of ethylenediamine in the preparation of alumina-supported Ni catalysts from [Ni(en)2(H2O)2](NO3)2: from solution properties to nickel particles", Comptes Rendus Chimie, Vol. 6, No. 2, 2003, pp. 231-240, doi: https://doi.org/10.1016/S1631-0748(03)00026-2. 
  39. K. Zhao, Z. Li, and L. Bian, "CO2 methanation and co-methanation of CO and CO2 over Mn-promoted Ni/Al2O3 catalysts", Frontiers of Chemical Science and Engineering, Vol. 10, 2016, pp. 273-280, doi: https://doi.org/10.1007/s11705-016-1563-5. 
  40. C. Dessal, A. Sangnier, C. Chizallet, C. Dujardin, F. Morfin, J. L. Rousset, M. Aouine, M. Bugnet, P. Afanasiev, and L. Piccolo, "Atmosphere-dependent stability and mobility of ca-talytic Pt single atoms and clusters on γ-Al2O3", Nanoscale, Vol. 11, No. 14, 2019, pp. 6897-6904, doi: https://doi.org/10.1039/C9NR01641D. 
  41. I. S. Zhidkov, A. A. Belik, A. I. Kukharenko, S. O. Cholakh, L. S. Taran, A. Fujimori, S. V. Streltsov, and E. Z. Kurmaev, "Cu-site disorder in CuAl2O4 as studied by XPS spectroscopy", JETP Letters, Vol. 114, 2021, pp. 556-560, doi: https://doi.org/10.1134/S0021364021210062. 
  42. L. Zhang, S. Wang, L. Lv, Y. Ding, D. Tian, and S. Wang, "Insights into the reactive and deactivation mechanisms of manganese oxides for ozone elimination: the roles of surface oxygen species", Langmuir, Vol. 37, No. 4, 2021, pp. 1410-1419, doi: https://doi.org/10.1021/acs.langmuir.0c02841. 
  43. N. Magg, B. Immaraporn, J. B. Giorgi, T. Schroeder, M. Baumer, J. Dobler, Z. Wu, E. Kondratenko, M. Cherian, M. Baerns, P. C. Stair, J. Sauer, and H. J. Freund, "Vibrational spectra of alumina- and silica-supported vanadia revisited: an experimental and theoretical model catalyst study", Journal of Catalysis, Vol. 226, No. 1, 2004, pp. 88-100, doi: https://doi.org/10.1016/j.jcat.2004.04.021. 
  44. L. Chen, J. W. Medlin, and H. Gronbeck, "On the reaction mechanism of direct H2O2 formation over Pd catalysts", ACS Catalysis, Vol. 11, No. 5, 2021, pp. 2735-2745, doi: https://doi.org/10.1021/acscatal.0c05548. 
  45. S. A. Acharya, V. M. Gaikwad, V. Sathe, and S. K. Kulkarni, "Influence of gadolinium doping on the structure and defects of ceria under fuel cell operating temperature", Applied Physics Letters, Vol. 104, No. 11, 2014, pp. 113508, doi: https://doi.org/10.1063/1.4869116.