DOI QR코드

DOI QR Code

Review of Thermodynamic Sorption Model for Radionuclides on Bentonite Clay

벤토나이트와 방사성 핵종의 열역학적 수착 모델 연구

  • Jeonghwan Hwang (Disposal Safety Evaluation Research Division, Korea Atomic Energy Research Institute (KAERI) ) ;
  • Jung-Woo Kim (Disposal Safety Evaluation Research Division, Korea Atomic Energy Research Institute (KAERI) ) ;
  • Weon Shik Han (Department of Earth System Sciences, Yonsei University) ;
  • Won Woo Yoon (Department of Earth System Sciences, Yonsei University) ;
  • Jiyong Lee (Department of Earth System Sciences, Yonsei University) ;
  • Seonggyu Choi (Disposal Performance Demonstration R&D Division, Korea Atomic Energy Research Institute (KAERI))
  • 황정환 (한국원자력연구원 저장처분기술개발부 ) ;
  • 김정우 (한국원자력연구원 저장처분기술개발부 ) ;
  • 한원식 (연세대학교 지구시스템과학과 ) ;
  • 윤원우 (연세대학교 지구시스템과학과 ) ;
  • 이지용 (연세대학교 지구시스템과학과 ) ;
  • 최승규 (한국원자력연구원 저장처분성능검증부)
  • Received : 2023.09.22
  • Accepted : 2023.10.16
  • Published : 2023.10.30

Abstract

Bentonite, predominantly consists of expandable clay minerals, is considered to be the suitable buffering material in high-level radioactive waste disposal repository due to its large swelling property and low permeability. Additionally, the bentonite has large cation exchange capacity and specific surface area, and thus, it effectively retards the transport of leaked radionuclides to surrounding environments. This study aims to review the thermodynamic sorption models for four radionuclides (U, Am, Se, and Eu) and eight bentonites. Then, the thermodynamic sorption models and optimized sorption parameters were precisely analyzed by considering the experimental conditions in previous study. Here, the optimized sorption parameters showed that thermodynamic sorption models were related to experimental conditions such as types and concentrations of radionuclides, ionic strength, major competing cation, temperature, solid-to-liquid ratio, carbonate species, and mineralogical properties of bentonite. These results implied that the thermodynamic sorption models suggested by the optimization at specific experimental conditions had large uncertainty for application to various environmental conditions.

벤토나이트는 고준위 방사성폐기물 처분을 위한 심층처분 시스템에서 처분용기와 암반 사이를 메우는 완충재로 고려되는 팽창성 점토이다. 벤토나이트는 높은 양이온교환능과 비표면적을 가지고 있기 때문에, 처분용기로부터 핵종이 누출될 경우, 수착하여 암반으로의 유출을 지연시키는 역할을 한다. 본 연구에서는 여러 선행연구에서 8종류의 벤토나이트를 사용하여 수행된 U, Am, Se, Eu 핵종의 수착실험 및 모델 자료를 취합하고, 각 연구에서 설정된 실험 조건들을 기반으로 열역학적 수착모델의 특성을 평가하였다. 핵종과 벤토나이트 간의 수착 거동 해석에 중요한 역할을 하는 열역학적 수착모델은 벤토나이트의 광물학적 특성뿐만 아니라 핵종 농도, 용액의 이온강도, 주 양이온, 온도, 고액비, 용존 탄산 농도 등 세부적인 실험 조건과 밀접하게 연관되어 있는 것으로 확인되었다. 이러한 결과는 특정 실험 조건에서 수행된 수착실험 및 모델의 최적화로 제안되는 수착 반응식과 반응상수가 다양한 환경 조건에 적용하기에 불확실성이 크다는 것을 의미한다. 따라서, 심층처분 시스템에 적용가능한 열역학적 수착모델을 구축하기 위해서는 현장 조사 및 실험이 함께 수행되어야 한다.

Keywords

Acknowledgement

본 연구는 2023년도 정부(과학기술정보통신부)의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국연구재단의 지원을 받아 수행된 연구사업임 (NRF-2021M2E1A1085185)

References

  1. Baeyens, B. and Bradbury, M.H. (1997) A mechanistic description of Ni and Zn sorption on Na-montmorillonite Part I: Titration and sorption measurements. Journal of Contaminant Hydrology, v.27, p.199-222. doi: 10.1016/S0169-7722(97)00007-7
  2. Birkholzer, J., Houseworth, J. and Tsang, C.-F. (2012) Geologic disposal of high-level radioactive waste: Status, key issues, and trends. Annual Review of Environment and Resources, v.37, p.79-106. doi: 10.1146/annurev-environ-090611-143314
  3. Boult, K.A., Cowper, M.M, Heath, T.G., Sato, H., Shibutani, T. and Yui, M. (1998) Towards an understanding of the sorption of U (VI) and Se (IV) on sodium bentonite. Journal of Contaminant Hydrology, v.35, p.141-150. doi: 10.1016/S0169-7722(98)00122-3
  4. Bradbury, M.H. and Baeyens, B. (1997) A mechanistic description of Ni and Zn sorption on Na-montmorillonite Part II: modelling. Journal of Contaminant Hydrology, v.27, p.223-248. doi: 10.1016/S0169-7722(97)00007-7
  5. Bradbury, M.H. and Baeyens, B. (2000) A generalised sorption model for the concentration dependent uptake of caesium by argillaceous rocks. Journal of Contaminant Hydrology, v.42, p.141-163. doi: 10.1016/S0169-7722(99)00094-7
  6. Bradbury, M.H. and Baeyens, B. (2002) Sorption of Eu on Na-and Ca-montmorillonites: experimental investigations and modelling with cation exchange and surface complexation. Geochimica et Cosmochimica Acta, v.66, no.13, p.2325-2334. doi: 10.1016/S0016-7037(02)00841-4
  7. Bradbury, M.H. and Baeyens, B. (2005) Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: Linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochimica et Cosmochimica Acta, v.69, p.875-892. doi: 10.1016/j.gca.2004.07.020
  8. Bradbury, M.H. and Baeyens, B. (2006) Modelling sorption data for the actinides Am (III), Np (V) and Pa (V) on montmorillonite. Radiochimica Acta, v.94, p.619-625. doi: 10.1524/ract.2006.94.9-11.619
  9. Bradbury, M.H. and Baeyens, B. (2011) Predictive sorption modelling of Ni (II), Co (II), Eu (IIII), Th (IV) and U (VI) on MX-80 bentonite and Opalinus Clay: A "bottom-up" approach. Applied Clay Science, v.52, p.27-33. doi: 10.1016/j.clay.2011.01.022
  10. Chen, Z.-G., Tang, C.-S., Shen, Z., Liu, Y.-M. and Shi, B. (2017) The geotechnical properties of GMZ buffer/backfill material used in high-level radioactive nuclear waste geological repository: a review. Environmental Earth Sciences, v.76, 270. doi: 10.1007/s12665-017-6580-2
  11. Chen, Z., Jin, Q., Guo, Z., Montavon, G. and Wu, W. (2014) Surface complexation modeling of Eu (III) and phosphate on Na-bentonite: Binary and ternary adsorption systems. Chemical Engineering Journal, v.256, p.61-68. doi: 10.1016/j.cej.2014.06.096
  12. Delany, J. and Lundeen, S. (1991) The LLNL thermochemical data base--revised data and file format for the EQ3/6 package, Lawrence Livermore National Lab., CA (United States).
  13. Dincer, I. and Acar, C. (2015) A review on clean energy solutions for better sustainability. International Journal of Energy Research, v.39, p.585-606. doi: 10.1002/er.3329
  14. Dzombak, D.A. and Morel, F.M. (1991) Surface complexation modeling: hydrous ferric oxide. John Wiley & Sons.
  15. Fernandes, M.M., Baeyens, B. and Bradbury, M.H. (2008) The influence of carbonate complexation on lanthanide/actinide sorption on montmorillonite. Radiochimica Acta, v.96, p.691-697. doi: 10.1524/ract.2008.1555
  16. Fernandes, M.M., Baeyens, B., Dahn, R., Scheinost, A. and Bradbury, M.H. (2012) U (VI) sorption on montmorillonite in the absence and presence of carbonate: A macroscopic and microscopic study. Geochimica et Cosmochimica Acta, v.93, p.262-277. doi: 10.1016/j.gca.2012.04.017
  17. Fuller, A.J., Shaw, S., Peacock, C.L., Trivedi, D., Small, J.S., Abrahamsen, L.G. and Burke, I.T. (2014) Ionic strength and pH dependent multi-site sorption of Cs onto a micaceous aquifer sediment. Applied Geochemistry, v.40, p.32-42. doi: 10.1016/j.apgeochem.2013.10.017
  18. Gaines, G.L. and Thomas, H.C. (1953) Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption. The Journal of Chemical Physics, v.21, no.4, p.714-718. doi: 10.1063/1.1698996
  19. Gao, P., Zhang, D., Jin, Q., Chen, Z., Wang, D., Guo, Z. and Wu, W. (2021) Multi-scale study of Am (III) adsorption on Gaomiaozi bentonite: Combining experiments, modeling and DFT calculations. Chemical Geology, 120414. doi: 10.1016/j.chemgeo.2021.120414
  20. Grambow, B., Fattahi, M., Montavon, G., Moisan, C. and Giffaut, E. (2006) Sorption of Cs, Ni, Pb, Eu (III), Am (III), Cm, Ac (III), Tc (IV), Th, Zr, and U (IV) on MX 80 bentonite: an experimental approach to assess model uncertainty. Radiochimica Acta, v.94, p.627-636. doi: 10.1524/ract.2006.94.9.627
  21. Guillaumont, R. and Mompean, F.J. (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium, 5. Elsevier Amsterdam.
  22. Guo, Z., Xu, J, Shi, K, Tang, Y, Wu, W. and Tao, Z. (2009) Eu (III) adsorption/desorption on Na-bentonite: experimental and modeling studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v.339, p.126-133. doi: 10.1016/j.colsurfa.2009.02.007
  23. IAEA (2003) Scientific and Technical Basis for the Geological Disposal of Radioactive Wastes. Technical Reports Series No. 413. INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, Austria.
  24. IAEA (2009) Geological Disposal of Radioactive Waste: Technological Implications for Retrievability. Nuclear Energy Series No. NW-T-1.19. INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, Austria.
  25. IAEA (2011) Geological Disposal Facilities for Radioactive Waste, Specific safety guide No. SSG-14. INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, Austria.
  26. IAEA (2022) Status and Trends in Spent Fuel and Radioactive Waste Management. INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, Austria.
  27. KAERI (2008) Korean reference HLW disposal system, Korea Atomic Energy Research Institute, Daejeon, South Korea.
  28. Kale, R.C. and Ravi, K. (2019) Influence of thermal history on swell pressures of compacted bentonite. Process Safety and Environmental Protection, v.123, p.199-205. doi: 10.1016/j.psep.2019.01.004
  29. Kaufhold, S. and Dohrmann, R. (2016) Distinguishing between more and less suitable bentonites for storage of high-level radioactive waste. Clay Minerals, v.51, p.289-302. doi: 10.1180/claymin.2016.051.2.14
  30. Korichi, S. and Bensmaili, A. (2009) Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling. Journal of hazardous materials, v.169, p.780-793. doi: 10.1016/j.jhazmat.2009.04.014
  31. Kowal-Fouchard, A., Drot, R., Simoni, E. and Ehrhardt, J. (2004) Use of spectroscopic techniques for uranium (VI)/montmorillonite interaction modeling. Environmental Science and Technology, v.38, p.1399-1407. doi: 10.1021/es0348344
  32. Kumar, S., Pente, A., Bajpai, R., Kaushik, C. and Tomar, B. (2013) Americium sorption on smectite-rich natural clay from granitic ground water. Applied geochemistry, v.35, p.28-34. doi: 10.1016/j.apgeochem.2013.05.016
  33. Lee, J.O., Choi, H. and Kim, G.Y. (2017) Numerical simulation studies on predicting the peak temperature in the buffer of an HLW repository. International Journal of Heat and Mass Transfer, v.115, p.192-204. doi: 10.1016/j.ijheatmasstransfer.2017.07.039
  34. Liu, S., Jiang, Y., Yu, S., Tan, W., Zhang, T. and Lin, Z. (2022) Electric power supply structure transformation model of China for peaking carbon dioxide emissions and achieving carbon neutrality. Energy Reports, v.8, p.541-548. doi: 10.1016/j.egyr.2022.10.085
  35. Marty, N.C.M., Fritz, B., Clement, A. and Michau, N. (2010) Modelling the long term alteration of the engineered bentonite barrier in an underground radioactive waste repository. Applied Clay Science, v.47, p.82-90. doi: 10.1016/j.clay.2008.10.002
  36. Missana, T., Garcia-Gutierrez, M. and Alonso, U. (2004) Kinetics and irreversibility of cesium and uranium sorption onto bentonite colloids in a deep granitic environment. Applied Clay Science, v.26, p.137-150. doi: 10.1016/j.clay.2003.09.008
  37. Missana, T., Alonso, U. and Garcia-Gutierrez, M. (2009) Experimental study and modelling of selenite sorption onto illite and smectite clays. Journal of Colloid and Interface Science, v.334, p.132-138. doi: 10.1016/j.jcis.2009.02.059
  38. Missana, T., Benedicto, A., Garcia-Gutierrez, M. and Alonso, U. (2014) Modeling cesium retention onto Na-, K-and Ca-smectite: Effects of ionic strength, exchange and competing cations on the determination of selectivity coefficients. Geochimica et Cosmochimica Acta, v.128, p.266-277. doi: 10.1016/j.gca.2013.10.007
  39. Missana, T., Alonso, U. and Garcia-Gutierrez, M. (2021) Evaluation of component additive modelling approach for europium adsorption on 2: 1 clays: Experimental, thermodynamic databases, and models. Chemosphere, v.272, 129877. doi: 10.1016/j.chemosphere.2021.129877
  40. MOTIE (2021) The 2nd Management of High-Level Radioactive Waste, Ministry of Trade, Industry and Energy, Sejong, South Korea.
  41. Muller, J., Abdelouas, A., Ribet, S. and Grambow, B. (2012) Sorption of selenite in a multi-component system using the "dialysis membrane" method. Applied geochemistry, v.27, p.2524-2532. doi: 10.1016/j.apgeochem.2012.07.023
  42. NEA (2003) Engineered Barrier Systems and the Safety of Deep Geological Repositories: State of the Art Report. OECD, Nuclear Energy Agency
  43. Pabalan, R.T. and Turner, D.R. (1996) Uranium (6+) sorption on montmorillonite: Experimental and surface complexation modeling study. Aquatic Geochemistry, v.2, p.203-226. doi: 10.1007/BF01160043
  44. Sadekin, S., Zaman, S., Mahfuz, M. and Sarkar, R. (2019) Nuclear power as foundation of a clean energy future: A review. Energy Procedia, v.160, p.513-518. doi: 10.1016/j.egypro.2019.02.200
  45. Samper, J., Zheng, L., Montenegro, L., Fernandez, A.M. and Rivas, P. (2008) Coupled thermo-hydro-chemical models of compacted bentonite after FEBEX in situ test. Applied Geochemistry, v.23, p.1186-1201. doi: 10.1016/j.apgeochem.2007.11.010
  46. Schnurr, A., Marsac, R., Rabung, T., Lutzenkirchen, J. and Geckeis, H. (2015) Sorption of Cm (III) and Eu (III) onto clay minerals under saline conditions: Batch adsorption, laser-fluorescence spectroscopy and modeling. Geochimica et Cosmochimica Acta, v.151, p.192-202. doi: 10.1016/j.gca.2014.11.011
  47. Shi, K., Ye, Y., Guo, N., Guo, Z. and Wu, W. (2014) Evaluation of Se (IV) removal from aqueous solution by GMZ Na-bentonite: batch experiment and modeling studies. Journal of Radio-analytical and Nuclear Chemistry, v.299, p.583-589. doi: 10.1007/s10967-013-2807-1
  48. Silverio, L.B. and de Queiroz Lamas, W. (2011) An analysis of development and research on spent nuclear fuel reprocessing. Energy Policy, v.39, p.281-289. doi: 10.1016/j.enpol.2010.09.040
  49. Steefel, C.I., Carroll, S., Zhao, P. and Roberts, S. (2003) Cesium migration in Hanford sediment: a multisite cation exchange model based on laboratory transport experiments. Journal of Contaminant Hydrology, v.67, p.219-246. doi: 10.1016/S0169-7722(03)00033-0
  50. Stockmann, M., Fritsch, K., Bok, F., Steudtner, R., Muller, K., Nebelung, C., Brendler, V. and Stumpf, T. (2022) New insights into U (VI) sorption onto montmorillonite from batch sorption and spectroscopic studies at increased ionic strength. Science of The Total Environment, v.806, 150653. doi: 10.1016/j.scitotenv.2021.150653
  51. Tertre, E., Berger, G., Simoni, E., Castet, S., Giffaut, E., Loubet, M. and Catalette, H. (2006) Europium retention onto clay minerals from 25 to 150 C: experimental measurements, spectroscopic features and sorption modelling. Geochimica et Cosmochimica Acta, v.70, p.4563-4578. doi: 10.1016/j.gca.2006.06.1568
  52. Tournassat, C., Tinnacher, R.M., Grangeon, S. and Davis, J.A. (2018) Modeling uranium (VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential. Geochimica et Cosmochimica Acta, v.220, p.291-308. doi: 10.1016/j.gca.2017.09.049
  53. Yang, Z., Huang, L., Lu, Y., Guo, Z., Montavon, G. and Wu, W. (2010) Temperature effect on U (VI) sorption onto Na-bentonite. Radiochimica Acta, v.98, p.785-791. doi: 10.1524/ract.2010.1784
  54. Zavarin, M., Chang, E., Wainwright, H., Parham, N., Kaukuntla, R., Zouabe, J, Deinhart, A., Genetti, V., Shipman, S. and Bok, F. (2022) Community data mining approach for surface complexation database development. Environmental Science and Technology, v.56, p.2827-2838. doi: 10.1021/acs.est.1c07109
  55. Zhan, L., Bo, Y., Lin, T. and Fan, Z. (2021) Development and outlook of advanced nuclear energy technology. Energy Strategy Reviews, v.34, 100630. doi: 10.1016/j.esr.2021.100630
  56. Zheng, L., Rutqvist, J., Xu, H. and Birkholzer, J.T. (2017) Coupled THMC models for bentonite in an argillite repository for nuclear waste: Illitization and its effect on swelling stress under high temperature. Engineering Geology, v.230, p.118-129. doi: 10.1016/j.enggeo.2017.10.002
  57. Zheng, L., Samper, J. and Montenegro, L. (2011) A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis. Journal of Contaminant Hydrology, v.126, p.45-60. doi: 10.1016/j.jconhyd.2011.06.003