DOI QR코드

DOI QR Code

Analysis of Nutrient Content by Digestion Phase of Legumes using an In Vitro Digestion Model

In Vitro Digestion Model을 활용한 두류 소화 단계별 영양성분 변화 분석

  • Da Bin Lee (Food and Nutrition Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kyeong A Jang (Food and Nutrition Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • In Seon Hwang (Food and Nutrition Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Min Sook Kang (Food and Nutrition Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Mi-Kyung Seo (Food and Nutrition Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Haeng Ran Kim (Food and Nutrition Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Seon Mi Yoo (Food and Nutrition Division, National Institute of Agricultural Sciences, Rural Development Administration)
  • 이다빈 (농촌진흥청 국립농업과학원 식생활영양과) ;
  • 장경아 (농촌진흥청 국립농업과학원 식생활영양과) ;
  • 황인선 (농촌진흥청 국립농업과학원 식생활영양과) ;
  • 강민숙 (농촌진흥청 국립농업과학원 식생활영양과) ;
  • 서미경 (농촌진흥청 국립농업과학원 식생활영양과) ;
  • 김행란 (농촌진흥청 국립농업과학원 식생활영양과) ;
  • 유선미 (농촌진흥청 국립농업과학원 식생활영양과)
  • Received : 2023.08.21
  • Accepted : 2023.09.25
  • Published : 2023.10.31

Abstract

Changes in contents of free sugars, amino acids, and fatty acids of legumes were analyzed for each phase of in vitro digestion. In addition, contents of resistant starch in raw and digested pulses were compared. Soybeans, kidney beans, cowpeas, and chickpeas were analyzed. An in vitro digestion model was used to analyze contents of nutrients using LC-MS and GC-MS. Stachyose in kidneybean, cowpea, and chickpea increased as the digestion phase progressed. In four types of legumes, raffinose slightly decreased or showed no significant difference between the Oral phase and the BBMV phase. Content of glucose, a monosaccharide, increased during the BBMV phase. During the digestion phase, levels of free amino acids and free fatty acids also increased. Content of resistant starch was reduced compared to that in the raw material. It was 0.01g/100 g food in soybean, 1.06 g/100 g food in red kidney bean, 0.77g/ 100g food in cowpea, and 0.76 g/100 g food in chickpea. It was confirmed that nutrients in the in vitro digestion model were liberated at each digestion phase with changes in the content of resistant starch. These results are expected to be used as fundamental data for obtaining bioavailability of nutrients.

Keywords

Acknowledgement

본 연구는 농촌진흥청 기관고유 연구사업 "식재료 및 식단의 장내 미생물·대사체 변화 분석 및 건강 영향 예측 연구(PJ016762)"의 일환으로 수행되었으며, 지원에 감사를 드립니다.

References

  1. Bae HG, Kim S, Lee JC, Kim MJ. 2021. Evaluation of antioxidant activity and lipid oxidative stability of roasted buckwheat according to in vitro digestive system. Korean J Food Preserv 28:612-620 https://doi.org/10.11002/kjfp.2021.28.5.612
  2. Bouayed J, Hoffmann L, Bohn T. 2011. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem128:14-21 https://doi.org/10.1016/j.foodchem.2011.02.052
  3. Cha SH, Song HY, Pyeon GN, Hong EA, Bak SL, Park SB, Jiang S, Jang KI. 2023. Changes of isoflavone contents in white and black soybean powders prepared under drying conditions after soaking. Korean J Food Nutr 36:87-92
  4. Chang MJ. 2004. Starch in human health. Food Ind Nutr 9:10-18
  5. Choi M, Cho K, Nam S. 2014. Antioxidant activities and changes in trans-resveratrol and indigestible oligosaccharides according to fermentation periods in cheonggukjang. JKorean Soc Food Sci Nutr 43:243-249 https://doi.org/10.3746/jkfn.2014.43.2.243
  6. Ferreira-Lazarte A, Gallego-Lobillo P, Javier Moreno F, Villamiel M, Hernandez-Hernandez O. 2019. In vitro digestibility of galactooligosaccharides: Effect of the structural features on their intestinal degradation. J Agric Food Chem 67:4662-4670 https://doi.org/10.1021/acs.jafc.9b00417
  7. Hettiarachchi HACO, Gunathilake KDPP, Jayatilake S. 2021. Effect of in-vitro gastrointestinal digestion and dialysis process on phenolic compounds and antioxidant capacity of selected underutilized fruits in Sri Lanka. Trop Agric Res 32:212-218 https://doi.org/10.4038/tar.v32i2.8468
  8. Hodoniczky J, Morris CA, Rae AL. 2012. Oral and intestinal digestion of oligosaccharides as potential sweeteners: A systematic evaluation. Food Chem 132:1951-1958 https://doi.org/10.1016/j.foodchem.2011.12.031
  9. Hoehnel A, Bez J, Sahin AW, Coffey A, Arendt EK, Zannini E. 2020. Leuconostoc citreum TR116 as a microbial cell factory to functionalise high-protein faba bean ingredients for bakery applications. Foods 9:1706
  10. Hur SJ, Lee SK, Kim YC, Choi IW. 2012. Development of in vitro human digestion models for health functional food research. Food Sci Ind 45:40-49
  11. Im JY, Kim SC, Kim S, Choi Y, Yang MR, Cho IH, Kim HR. 2016. Protein and amino-acid contents in Backtae, Seoritae, Huktae, and seomoktae soybeans with different cooking methods. Korean J Food Cookery Sci 32:567-574 https://doi.org/10.9724/kfcs.2016.32.5.567
  12. Jeong D, Han JA, Liu Q, Chung HJ. 2019. Effect of processing, storage, and modification on in vitro starch digestion characteristics of food legumes: A review. Food Hydrocoll 90:367-376 https://doi.org/10.1016/j.foodhyd.2018.12.039
  13. Jo YN, Hwang HJ, Yoo M, Lee DE, Jung TH, Han KS. 2018. Estimation of digestibility of hanwoo cuts using in vitro physicochemical gastroduodenal system. J Korean Soc Food Sci Nutr 47:1029-1035 https://doi.org/10.3746/jkfn.2018.47.10.1029
  14. Julio-Gonzalez LC, Moreno FJ, Jimeno ML, Doyaguez EG, Olano A, Corzo N, Hernandez-Hernandez O. 2021. Hydrolysis and transglycosylation activities of glycosidases from small intestine brush-border membrane vesicles. Food Res Int 139:109940
  15. Kim HH, Kim YJ, Kim KY, Shin CS, Yoon JW, Jeon S, Kim BM, Bang J, Kim K. 2023. Effects of 2'-fucosyllactyose on defecation and intestinal microbiota in mice. Korean J Food Nutr 36:193-201
  16. Kim HJ, Seo JH, Won DJ, Han N, Lee JY, Kim M, Lee YY, Kang MS. 2022. Comparison of physicochemical properties of seed protein in soybean cultivars. J Korean Soc Food Sci Nutr 51:1048-1055 https://doi.org/10.3746/jkfn.2022.51.10.1048
  17. Kim HS, Oh KY, Lee SM, Kim JY, Lee SH, Jang JS, Lee MH. 2021. Effect of extraction methods on the quality of pomegranate juice and physiological activity. J Korean Soc Food Sci Nutr 50:136-148 https://doi.org/10.3746/jkfn.2021.50.2.136
  18. Kim SL, Lee YH, Chi HY, Lee SJ, Kim SJ. 2007. Diversity in lipid contents and fatty acid composition of soybean seeds cultivated in Korea. Korean J Crop Sci 52:348-357
  19. Kopf-Bolanz KA, Schwander F, Gijs M, Vergeres G, Portmann R, Egger L. 2012. Validation of an in vitro digestive system for studying macronutrient decomposition in humans. J Nutr142:245-250 https://doi.org/10.3945/jn.111.148635
  20. Lee DB, Lee YJ, Kang MS, Kim HR, Jang KA. 2022. Analysis of resistant starch content and its functional properties in legumes and manufactured soy milk. Korean J Food Cookery Sci 38:332-340 https://doi.org/10.9724/kfcs.2022.38.6.332
  21. Lee S, Lee Y, Kim HS. 2013. Analysis of the general and functional components of various soybeans. J Korean Soc Food Sci Nutr 42:1255-1262 https://doi.org/10.3746/jkfn.2013.42.8.1255
  22. Lee SM, Park HJ, Kim HS, Kim JY, Lee SH, Jang JS, Lee MH. 2019. Quality characterization by various juice extraction method and changes in physiological activities by in vitrodigestion of Angelica keiskei, Brassica oleracea, and Oenanthe javanica vegetable juices. J Korean Soc Food Sci Nutr 48:718-727 https://doi.org/10.3746/jkfn.2019.48.7.718
  23. McCleary BV, McLoughlin C, Charmier LMJ, McGeough P. 2020. Measurement of available carbohydrates, digestible, and resistant starch in food ingredients and products. Cereal Chem 97:114-137 https://doi.org/10.1002/cche.10208
  24. Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C, Carriere F, Boutrou R, Corredig M, Dupont D, Dufour C, Egger L, Golding M, Karakaya S, Kirkhus B, Le Feunteun S, Lesmes U, Macierzanka A, Mackie A, Marze S, McClements DJ, Menard O, Recio I, Santos CN, Singh RP, Vegarud GE, Wickham MSJ, Weitschies W, Brodkorb A. 2014. A standardised static in vitro digestion method suitable for food: An international consensus. Food Funct 5:1113-1124 https://doi.org/10.1039/C3FO60702J
  25. National Institute of Agricultural Sciences. 2021. Korean Food Composition Table. 10th ed. rev. pp.90-96. National Institute of Agricultural Sciences
  26. Nugent AP. 2005. Health properties of resistant starch. Nutr Bull 30:27-54 https://doi.org/10.1111/j.1467-3010.2005.00481.x
  27. Oku T, Nakamura S. 2002. Digestion, absorption, fermentation, and metabolism of functional sugar substitutes and their available energy. Pure Appl Chem 74:1253-1261 https://doi.org/10.1351/pac200274071253
  28. Oku T, Tanabe K, Ogawa S, Sadamori N, Nakamura S. 2011. Similarity of hydrolyzing activity of human and rat small intestinal disaccharidases. Clin Exp Gastroenterol 2011:155-161 https://doi.org/10.2147/CEG.S19961
  29. Shiowatana J, Kitthikhun W, Sottimai U, Promchan J, Kunajiraporn K. 2006. Dynamic continuous-flow dialysis method to simulate intestinal digestion for in vitro estimation of mineral bioavailability of food. Talanta 68:549-557 https://doi.org/10.1016/j.talanta.2005.04.068
  30. Xu Q, Ritzoulis C, Han J, Han F, Jin W, Liu W. 2021. Particle degradation and nutrient bioavailability of soybean milk during in vitro digestion. Food Biophys 16:58-69 https://doi.org/10.1007/s11483-020-09649-5
  31. Zhang G, Sun C, Song, J, Jin W, Tang Y, Zhou D, Song L. 2023. Glycation of whey protein isolate and stachyose modulates their in vitro digestibility: Promising prebiotics as functional ingredients. Food Biosci 52:102379
  32. Zuo Z, Liu S, Pang W, Lu B, Sun W, Zhang N, Zhou X, Zhang D, Wang Y. 2022. Beneficial effect of kidney bean resistant starch on hyperlipidemia-induced acute pancreatitis and related intestinal barrier damage in rats. Molecules 27:2783