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Abstract
The prediction problem of univariate records, though not addressed in multivariate records, has been dis-

cussed by many authors based on records values. There are various definitions for multivariate records among
which depth-based records have been selected for the aim of this paper. In this paper, by means of the maximum
likelihood and conditional median methods, point and interval predictions of depth values which are related to
the future depth-based multivariate records are considered on the basis of the observed ones. The observations
derived from some elements of the elliptical distributions are the main reason of studying this problem. Finally,
the satisfactory performance of the prediction methods is illustrated via some simulation studies and a real dataset
about Kermanshah city drought.

Keywords: multivariate record, depth function, depth-based multivariate record, prediction, ellipti-
cal distribution

1. Introduction

Let X1, X2, . . . is a sequence of independent identically distributed (i.i.d) random variables with cumu-
lative distribution function (cdf) F(x, θ) and probability density function (pdf) f (x, θ). An observation
X j is defined as an upper record value if X j > Xi for every j > i. Lower records can be defined
in an analogous way, only by reversing the inequalities. Records of i.i.d random variables have a
unique and unambiguous definition. Univariate records, their characteristics and their applications are
well described in the literature. See Resnick (1973), Arnold et al. (2011), Nevzorov (2001) and the
references therein. A survey of literature demonstrates comprehensive studies about estimation and
prediction based on the univariate records. Ahsanullah (1980), Smith (1988), Berred (1998), Raqab et
al. (2007), Ahmadi et al. (2009) and Ahsanullah and Nevzorov (2015) are some examples of studies
about inferential problems according to the univariate records.

Introducing the notion of record in multi-dimensional space is not as simple as uni-dimensional
space. This is due to the lack of some obvious ordering properties of univariate samples in the case of
multivariate observations. Hence, various definitions of multivariate records have been presented. For
example, Pareto record, dominating record and chain record presented by Gnedin (2007) and Hwang
and Tsai (2010) and depth-based records presented by Tat and Faridrohani (2021) are some types of
multivariate records.
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Despite different definitions for multivariate records, the problem of prediction of future records
has not been studied so far. The goal of this paper is to get into this problem through employing the
depth-based records. In the depth-based procedure, the position of each observation is allocated by its
depth value with respect to a global data cloud χs = {X1, . . . ,Xs}. So, this value determines whether a
multivariate observation can be a record. In other words, an observation is a depth-based record if its
depth value is the smallest one among all the previous observations. Therefore, measuring the depth
of observations in a global data cloud is an essential step in depth-based record recognition. Hence,
predicting the depth value of future records can be essentially important.

The depth-based multivariate records have been defined and investigated thoroughly by Tat and
Faridrohani (2021). Also, the marginal and joint distribution of depth-based record times and record
values have been presented. Such information led to the problem of maximum likelihood estimation
of the parameters in elliptical distribution family. This information which is useful in predicting the
records is exactly what we are looking for in this paper.

Let X1,X2, . . . be a sequence of multivariate observations with cdf F(x, θ) and pdf f (x, θ). Let
Rm = {R1,R2, . . . ,Rm} is the set of the first m depth-based records and Zm = {Z1,Z2, . . . ,Zm} is the
set of their corresponding depth values. Predicting Rt with t > m condition to the observed Rm and
Zm, can be an interesting problem in the field of multivariate records. Therefore, the ultimate goal
is to predict the future depth-based record value, Rt, t > m. Each record value, Ri is considered as
the concomitant of its depth value, Zi. So, predicting depth value related to the future depth-based
records is an underlying and primitive step in the prediction of depth-based record values. In this
paper, we are concerned with the prediction of the value of Zt, t > m, provided the knowledge of Rm

and Zm. Undoubtedly, this problem brings us one step closer to the problem of predicting the future
multivariate record value, Rt, t > m.

This paper is organized as follows. Section 2 firstly introduces depth notions and depth-based
records and secondly presents the concomitant approach through which the definition of depth-based
record is reconsidered and finally studies the distribution of depth value under 4 states while the
observations are from one of the multivariate normal or multivariate t distributions and the records
are recognized through Mahalanobis or projection depth functions. In Section 3, we introduce two
methods, maximum likelihood and conditional median procedures for point and interval prediction of
depth values. The aim of this paper is followed by these methods. Maximum likelihood equations
don’t have closed forms and a numerical procedure is needed to find maximum likelihood predictor
(MLP), while conditional median predictor (CMP) can be presented in a closed form. The perfor-
mance of two predictors is evaluated in Section 4 by means of the bias and mean square prediction
error. The corresponding prediction interval along with simulations and an illustrative example is also
discussed in this section. Finally, Section 5 includes the concluding remarks.

2. Preliminaries

As pointed out in Tat and Faridrohani (2021), in depth-based viewpoint, an observation is a proper
candidate for record if it is relatively far from the previous observations. So we should be able to
determine the position of each observation relative to the dataset from which the observation is de-
rived. The notion of depth can be a good tool for this matter. In this section, at the outset, we give
a brief review of the notion of data depth and present two depth functions which will be used in this
paper. Then, we introduce the depth-based multivariate records and review some of their needful
characteristics.
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2.1. Depth notion

Data depth is a device for measuring the centrality of a given point with respect to a multivariate
dataset or distribution. Employing the depth values, a center-outward ordering of points and subse-
quently, center-outward ranking are formed. The center-outward ranking has been widely applied in
multivariate nonparametric inferences. It would be beneficial in presenting depth-based multivariate
records, too.

Let F be the class of distributions on Rp and let F ∈ F . An associated depth function D(X, F)
is defined to provide a center-outwared ordering of points X ∈ Rp relative to distribution F. Based
on center-outward ordering interpretation, the set of points that globally maximize depth is the center
and the points near the center have higher depth Zuo and Serfling (2000a). A formal definition of
statistical depth function has been presented by Zuo and Serfling (2000a) as follow:

Let, D(.; .) : Rp ∗F → R1 is bounded, nonnegative and satisfies the following properties :

• Affine invariance: D(AX + b, FAX+b) = D(X, FX), holds for any random X in Rp and p × p nonsin-
gular matrix A and p-vector b.

• Maximality at center: D(θ, F) = supx∈Rp D(x, F) holds if F is symmetric about θ in some sense.

• Monotonicity relative to the deepest point: for any F having deepest point θ, D(x, F) ≤ D(θ+α(x−
θ), F) holds for α ∈ [0, 1].

• Vanishing at infinity: if ||x|| → ∞ then D(x, F)→ 0.

Then D(., F) is called statistical depth function. For more details see Zuo and Serfling (2000a) and
Serfling (2006).

D(X j, F) is a measure of depth value of the observation X j with respect to the underlying dis-
tribution. When F is unknown, D(X j, F) can be replaced with its sample version, D(X j, Fs), which
calculates the depth value of the point X j with respect to a corresponding global data cloud, χs =

{X1, . . . ,Xs}.
Hereafter, D(X j) = D(X j, F) and Ds(X j) = D(X j, Fs) = D(X j, χs).
The word of depth was used for the first time by Tukey (1975) to introduce the halfspace depth

function. After that, various depth functions were introduced and applied for measuring the depth
value of observations. Here, only Mahalanobis and Projection-based depth functions are presented.

Mahalanobis depth (Liu and Singh, 1993) : The Mahalanobis depth of x ∈ Rp with respect to
the underlying distribution F is measured by:

MD (x, F) =
1

1 + (x − µF)′ Σ−1
F (x − µF)

,

where (x − µF)
′

Σ−1
F (x − µF) is a mahalanobis distance between x and the centered vector, µF , with

respect to the dispersion matrix of distribution F, ΣF .
Projection-based depth (Liu, 1992; Zuo, 2003) : Suppose,

O (x, F) = sup‖u‖=1

∣∣∣u′x − µ(Fu)
∣∣∣

σ(Fu)
,

and Fu is the distribution of u
′X, (|u

′x − µ(Fu)|)/σ(Fu) equals with 0 , if u
′x − µ(Fu) = σ(Fu) = 0.

Then the projection-based depth (PD) of a point x ∈ Rp with respect to the given F is defined as:

PD (x, F) =
1

1 + O (x, F)
.
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Remark 1. In situations where F is unknown, the sample versions of the above mentioned depth
functions are substituted. The sample version of Mahalanobis depth function denoted by MD(x, Fs) =

MD(x, χs), where s is the number of observations in a global data cloud, is created when (µ,Σ) is
substituted by (x̄, S ), where x̄ is the centroid of the data and S is the empirical covariance matrix with
respect to χs. Also, the sample version of PD is denoted by PD(x, Fs) = PD(x, χs). A specific pair
of (µ, σ) results in a specific PD, but the pair (µ, σ) = (Med,MAD) have had long-term use, Med is
median and MAD is median absolute deviation of χs.

2.2. Depth-based records

Let χs = {X1, . . . ,Xs} be the global data cloud, containing all the first s’th random samples from the
p-dimensional distribution function F(x, θ). The observation X j is a sample depth-based record if
either j = 1 or j > 1 and

Ds(X j) = min
(
Ds(X1),Ds(X2), . . . ,Ds(X j)

)
,

where Ds(X j) is the depth value of the observation X j with respect to the data cloud χs.
Also, the sequences of depth-based record times {Tn} and record values {Rn} are defined as follows:

T1 = 1, R1 = X1,

Tm = min
{
j > Tm−1 : Ds(X j) = min

(
Ds(X1),Ds(X2), . . . ,Ds(X j)

)}
,

Rm = XTm .

For more familiarity with depth-based record and details on its characteristics see Tat and Faridro-
hani (2021).

2.3. Distributions

To get the result, it is important to know the pdf of depths related to depth-based records.
Let χs = {X1, . . . ,Xs} is a random sample from absolutely continuous distribution function FX(x, θ).

Correspondingly, there is a set of depth values Ds = {Ds(X1), . . . ,Ds(Xs)}, s ≥ 1, where Y j = Ds(X j)
is a univariate random variable with continuous distribution function FY (y). Ds is sorted in a descend-
ing order. Sorting is done by applying the center-outward ordering scheme such that the last member
of the sorted Ds is a lower record in the sense of univariate records. In this way, pairs of order statistics
(X[1],Ds(X[1])), . . . , (X[s],Ds(X[s])) are achieved. Employing the concomitant procedure and accord-
ing to the definition of depth-based records, X j is a depth-based record if Ds(X j) is a lower record in
the set D j.

Now suppose that R j = XT j , j = 1, 2, . . . ,m, then r = {r1, . . . , rm} denotes a set of the first
m observed depth-based record values from χs. Correspondingly, z = {z1, z2, . . . , zm} are the depth
values of records, z j = Ds(r j) for j = 1, . . . ,m, and z1 > z2 > · · · > zm.

According to Tat and Faridrohani (2021), the joint pdf of the first m depth of depth-based records,
Zm = {Z1,Z2, . . . ,Zm}, is similar to its ordinay univariate records obtained by Ahsanullah (2009) as
follows:

fZ1,...,Zm (z1, . . . , zm) =
fY (z1)
FY (z1)

fY (z2)
FY (z2)

· · ·
fY (zm−1)
FY (zm−1)

fY (zm), (2.1)
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The marginal pdf of depth of the jth depth-based record, Z j, is given by

fZ j (z) =
fY (z)

(
−logFY (z)

) j−1

( j − 1)!
, (2.2)

Also the conditional pdf of Zt given Zm, m < t < s, is

ft|m(zt | zm) =
fY (zt)

(
logFY (zm) − logFY (zt)

)t−m−1

FY (zm)(t − m − 1)!
. (2.3)

It should be noted that FY (y) depends on FX(x, θ) and cannot be independently determined. In the
next subsection, we will explain their relevancy.

Now we intend to explicate the nexus between the distribution of the multivariate observations
and the distribution of their depth values.

We understand from the literature that if observations are from elliptical distribution and the depth
functions have some property, then the distribution of the depth values has a known form.

A random vector X in Rp has an elliptical distribution, X ∼ Ed(h;µ,Σ), if its density function is
of the form

f (x;µ,Σ) = Cp |Σ|
− 1

2 h
(
(x − µ)

′

Σ−1(x − µ)
)
, (2.4)

where Cp is a constant depending on p and the function h; µ is the center of the distribution; Σ is a
positive definite matrix and h(·) is a nonnegative function (Liu et al., 1999).

According to Zuo and Serfling (2000b), suppose that X has elliptical distribution defined in (2.4)
and D(., F) is affine invariant (property P1) and attains maximum value at µ (property P2), then D(x, F)
can be written in the form of

D(x, F) = g
(
(x − µ)

′

Σ−1(x − µ)
)
, (2.5)

for some nonincreasing function g.
The function g is accessible for both Mahalanobis and projection depth functions. For the Maha-

lanobis depth function and t ∈ R, g(t) = 1/(1 + t) and based on Zuo (2003), g(t) = 1/(1 +
√

t), for the
projection depth function.

The family of multivariate t distribution and multivariate normal distribution are members of the
elliptical distribution and can be written in the form of (2.5) easily.

If we suppose the multivariate observations are from multivariate t or multivariate normal distri-
butions and the applied depth function is Mahalanobis or projection, we will have four states which
will be presented in continue.

S1. Assume X1,X2, . . . be a sequence of i.i.d observations from Np(µ,Σ). Suppose that Mahalanobis
depth function is applied for measuring the depth values of the observations. We define, Y =

D(x) = 1/(1 + T ), where T = (X − µ)
′

Σ−1(X − µ) ∼ χ2
p, a Chi-square distribution with p degrees

of freedom (DeGroot, 2005). Then the distribution function of Y is

FY (y) =

∫ ∞

1−y
y

1
Γ(p/2)

(
1
2

) p
2

t
p
2 −1e−

t
2 dt. (2.6)
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S2. Assume X1,X2, . . . be a sequence of i.i.d observations from Np(µ,Σ). Suppose that projection
depth function is employed for measuring the depth values of the observations. Then Y = D(X) =

1/(1 +
√

T ) where T = (X − µ)
′

Σ−1(X − µ). The distribution function of Y is of the form

FY (y) =

∫ ∞

(
1−y

y

)2

1
Γ(p/2)

(
1
2

) p
2

t
p
2 −1e−

t
2 dt. (2.7)

S3. Suppose X1,X2, . . . be a sequence of i.i.d observations from tp(µ,Σ, ν). If Mahalanobis depth
function is used for calculating the depth values of the observations, then Y = D(x) = 1/(1 + pF)
where F = T/p = (1/p)(X−µ)

′

Σ−1(X−µ) ∼ F(p, ν), the F distribution with p numerator degrees
of freedom and ν denominator degrees of freedom. The distribution function of Y is given by

FY (y) =

∫ ∞

1−y
py

Γ((p + ν)/2)
Γ(v/2)Γ(p/2)

( p
ν

) p
2 f

p−2
2[

1 + ( f p/ν)
] p+ν

2

df. (2.8)

S4. Let X1,X2, . . . be a sequence of i.i.d observations from tp(µ,Σ, ν). Suppose depth values of
observations are calculated using projection function. So, Y = D(x) = 1/(1 +

√
pF), where

F = T/p = (1/p)(X − µ)
′

Σ−1(X − µ) ∼ F(p, ν), has the distribution function of the form

FY (y) =

∫ ∞

(1−y)2

py2

Γ((p + ν)/2)
Γ(v/2)Γ(p/2)

( p
ν

) p
2 f

p−2
2[

1 + ( f p/ν)
] p+ν

2

df. (2.9)

Prediction depth of the future depth-based records will be done under each of the above states in what
follows.

3. Prediction

In this section, we deal with the problem of predicting depth of the depth-based records. Suppose
that we observe the first m depth-based records, r = {r1, . . . , rm}, and the corresponding depth values,
z = {z1, z2, . . . , zm}, respectively from FX(x, θ) and FY (y), where θ is unknown. Our aim is to predict
Zt, t > m, having observed z with two different schemes; maximum likelihood and conditional median
prediction.

3.1. Maximum likelihood prediction

In this subsection, our objective is to predict the depth of the future depth-based records using maxi-
mum likelihood approach. The joint predictive likelihood function of Zt is given as

L(z,Zt) = f (z)h(zt | z)
= f (z) ft|m(zt | zm),

where the last equality is obtained by the Markovian property of univariate records. If there exists
Z0

t = Zmle
t such that

L(z,Z0
t ) = supzt

L(z,Zt),

then Z0
t is the maximum likelihood predictor (MLP) of Zt.
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Using the equations (2.1)–(2.3), the predictive likelihood function is

L(z,Zt) =

m∏
j=1

fY (z j)
FY (z j)

×
fY (zt)

(
logFY (zm) − logFY (zt)

)t−m−1

(t − m − 1)!
, (3.1)

and consequently, the predictive log-likelihood function is given by

l(z,Zt) =

m∑
j=1

(
log fY (z j) − logFY (z j)

)
+ (t − m − 1) log

(
logFY (zm) − logFY (zt)

)
+ log fY (zt) − log (t − m − 1)!,

The MLP of Zt can be obtained from the following normal equation.

0 =
∂l(z,Zt)
∂Zt

=
f
′

Y (zt)
FY (zt)

− (t − m − 1)
fY (zt)

FY (zt) ×
(
logFY (zm) − logFY (zt)

) , (3.2)

The above equations cannot be solved in closed form. Thus, we must use a numerical procedure to
find the maximum likelihood predictor (MLP).

3.2. Conditional median prediction

Using the conditional distribution of Zt given Zm is an approach for prediction the future records.
Here, we use this method for predicting depth of the future depth-based records.

Under the assumptions mentioned in this section and using the Markovian property of univariate
records, the conditional density of Zt given z is as

f (zt | z) = f (zt | zm) =
fY (zt)

FY (zm)
×

(
logFY (zm) − logFY (zt)

)t−m−1

(t − m − 1)!
, zt < zm, (3.3)

The median of this distribution is called the conditional median predictor (CMP). The CMP is a
function of zm. So assume that

ẐCMP
t = h(zm) = ω.

Hence,

P (h(zm) ≤ Y | zm) =
1
2
.

Using the equation (3.3)∫ zm

ω

fY (zt)
FY (zm)

×

(
logFY (zm) − logFY (zt)

)s−m−1

(s − m − 1)!
dzt =

1
2
.

If we assume that Zm = zm has been observed, then by taking q = logFY (zm) − logFY (zt), the above
equality can be rewritten as ∫ log FY (zm)

FY (ω)

0

qt−m−1

(t − m − 1)!
e−qdq =

1
2
.
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Table 1: Bias and MSPE of MLP and CMP for multivariate normal distribution with parameter sets (4.1) and
(4.2)

Distributions m t
Mahalanobis Projection

MLP CMP MLP CMP
Bias MSPE Bias MSPE Bias MSPE Bias MSPE

Multivariate normal distribution

6 7 0.0501 0.0055 0.0030 2.2 ×10−4 0.0789 0.0111 −0.0144 5.8 ×10−4

with parameter set (4.1)

6 8 0.0636 0.0072 0.0039 2.2 ×10−4 0.0731 0.0103 −0.0260 1.2 ×10−3

6 9 0.0738 0.0087 0.0040 2.4 ×10−4 0.0871 0.0122 −0.0342 1.7 ×10−3

6 10 0.0833 0.0104 0.0044 2.5 ×10−4 0.0903 0.0132 −0.0420 2.3 ×10−3

7 8 0.0421 0.0042 0.0009 1.2 ×10−4 0.0725 0.0093 −0.0127 3.9 ×10−4

7 9 0.0523 0.0052 0.0010 1.7 ×10−4 0.0698 0.0080 −0.0216 7.5 ×10−4

7 10 0.0618 0.0064 −0.0015 1.8 ×10−4 0.0816 0.0105 −0.0300 1.2 ×10−3

8 9 0.0345 0.0031 −0.0011 9.7 ×10−5 0.0677 0.0074 −0.0096 2.1 ×10−4

8 10 0.0440 0.0040 −0.0007 1.0 ×10−4 0.0700 0.0076 −0.0184 5.2 ×10−4

9 10 0.0291 0.0025 −0.0024 6.9 ×10−4 0.0642 0.0067 −0.0091 1.7 ×10−4

Multivariate normal distribution

6 7 0.0545 0.0058 −0.0005 2.9 ×10−4 0.0679 0.0094 0.0054 4.4 ×10−4

with parameter set (4.2)

6 8 0.0705 0.0078 0.0031 3.3 ×10−4 0.0691 0.0099 0.0080 5.9 ×10−4

6 9 0.0794 0.0090 0.0039 3.4 ×10−4 0.0784 0.0114 0.0076 6.3 ×10−4

6 10 0.0932 0.0119 0.0041 4.2 ×10−4 0.0792 0.0116 0.0040 5.2 ×10−4

7 8 0.0494 0.0047 −0.0007 1.6 ×10−4 0.0585 0.0069 0.0015 2.8 ×10−4

7 9 0.0610 0.0062 0.0012 1.6 ×10−4 0.0603 0.0073 0.0015 2.9 ×10−4

7 10 0.0717 0.0079 0.0017 1.7 ×10−4 0.0698 0.0088 0.0017 3.0 ×10−4

8 9 0.0401 0.0037 −0.0004 9.7 ×10−5 0.0570 0.0061 0.0013 2.1×10−4

8 10 0.0503 0.0044 −0.0005 1.1 ×10−4 0.0654 0.0089 0.0043 2.2 ×10−4

9 10 0.0337 0.0025 −0.0017 6.7 ×10−5 0.0599 0.0061 0.0044 1.3 ×10−4

So,

ẐCMP
t = F−1

Y

(
FY (zm) × e−Med(W)

)
, (3.4)

where W ∼ G(t−m, 1) has gamma distribution with the shape parameter (t−m) and the scale parameter
1. Also, Med(W) stands for the median of W.

Suppose that M = log(FY (zm))/(FY (zt)). It is easily shown 2M|zm ∼ χ2
2(t−m). Thus, the exact

(1 − γ)100% prediction interval for Zt is

I =

(
F−1

(
exp

{
−1
2
χ2(t−m),(1−(γ/2))

}
FY (zm)

)
, F−1

(
exp

{
−1
2
χ2(t−m),(γ/2)

}
FY (zm)

))
, (3.5)

where χ2
r,p is 100pth percentile from the χ2 distribution with degrees of freedom r.

4. Simulation and data analysis

In this section, we discuss some predictions of depth values related to the future depth-based record
data extracted from a practical dataset by means of multivariate normal distribution and then conduct
some simulation studies to assess the performance of MLP of depth value due to the future depth-
based record as well as its CMP. For this purpose, we employ multivariate normal and multivariate t
distributions along with the Mahalanobis and projection-based depth functions. All the computations
are performed using R Software.

4.1. Simulation results

Here, we evaluate the performance of the different methods of predicting depth of the tth future depth-
based records condition to observe the first m record values. Precisely, we evaluate the performance
of the MLP and CMP in terms of bias and MSPE.
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Table 2: Bias and MSPE of MLP and CMP for multivariate t distribution with 3 degrees of freedom and
parameter sets (4.1) and (4.2)

Distributions m t
Mahalanobis Projection

MLP CMP MLP CMP
Bias MSPE Bias MSPE Bias MSPE Bias MSPE

Multivariate t distribution

6 7 0.0331 0.0043 0.0042 3.1 ×10−4 −0.0015 0.0047 0.0055 4.6 ×10−4

with parameter set (4.1)

6 8 0.0484 0.0060 0.0072 3.1 ×10−4 0.0153 0.0048 0.0115 5.8 ×10−4

6 9 0.0580 0.0073 0.0074 3.9 ×10−4 0.0280 0.0051 0.0144 5.8 ×10−4

6 10 0.0638 0.0083 0.0051 4.2 ×10−4 0.0412 0.0063 0.0152 6.1 ×10−4

7 8 0.0222 0.0033 0.0008 2.0 ×10−4 0.0168 0.0041 0.0019 2.3 ×10−4

7 9 0.0319 0.0042 0.0032 1.4 ×10−4 0.0315 0.0045 0.0071 3.3 ×10−4

7 10 0.0375 0.0049 0.0035 1.5 ×10−4 0.0459 0.0051 0.0073 3.3 ×10−4

8 9 0.0103 0.0026 0.0001 6.7 ×10−5 0.0305 0.0036 0.0011 1.8 ×10−4

8 10 0.0160 0.0030 0.0020 6.9 ×10−5 0.0442 0.0045 0.0022 2.1 ×10−4

9 10 −0.0018 0.0022 0.0002 1.5 ×10−5 0.0295 0.0033 −0.0024 1.3 ×10−4

Multivariate t distribution

6 7 0.0375 0.0046 0.0036 3.1 ×10−4 0.0395 0.0049 0.0051 4.5 ×10−4

with parameter set (4.2)

6 8 0.0531 0.0069 0.0080 3.0 ×10−4 0.0535 0.0070 0.0135 6.9 ×10−4

6 9 0.0609 0.0076 0.0082 3.2 ×10−4 0.0635 0.0086 0.0162 7.1 ×10−4

6 10 0.0686 0.0091 0.0084 3.3 ×10−4 0.0637 0.0086 0.0160 7.2 ×10−4

7 8 0.0243 0.0035 0.0021 1.5 ×10−4 0.0248 0.0034 0.0042 3.8 ×10−4

7 9 0.0341 0.0043 0.0043 1.5 ×10−4 0.0342 0.0043 0.0092 4.6 ×10−4

7 10 0.0411 0.0050 0.0049 1.6 ×10−4 0.0405 0.0049 0.0098 5.0 ×10−4

8 9 0.0127 0.0027 0.0004 6.0 ×10−5 0.0125 0.0026 0.0013 1.7 ×10−4

8 10 0.0194 0.0030 0.0020 6.7 ×10−5 0.0201 0.0033 0.0038 2.4 ×10−4

9 10 7.3 ×10−5 0.0019 −7.1 ×10−6 2.9 ×10−5 0.0021 0.0011 −0.0011 1.4 ×10−4

Table 3: Bias and MSPE of MLP and CMP for multivariate t distribution with 10 degrees of freedom and
parameter sets (4.1) and (4.2)

Distributions m t
Mahalanobis Projection

MLP CMP MLP CMP
Bias MSPE Bias MSPE Bias MSPE Bias MSPE

Multivariate t distribution

6 7 0.0138 0.0031 9.6 ×10−4 3.2 ×10−4 0.0199 0.0040 0.0078 4.6 ×10−4

with parameter set (4.1)

6 8 0.0291 0.0041 0.0060 3.9 ×10−4 0.0337 0.0049 0.0140 8.6 ×10−4

6 9 0.0429 0.0052 0.0068 4.2 ×10−4 0.0492 0.0065 0.0170 8.7 ×10−4

6 10 0.0511 0.0060 0.0070 5.1 ×10−4 0.0550 0.0071 0.0186 9.0 ×10−4

7 8 0.0058 0.0025 3.8 ×10−4 2.2 ×10−4 0.0099 0.0029 0.0033 4.3 ×10−4

7 9 0.0195 0.0030 0.0019 2.4 ×10−4 0.0219 0.0035 0.0074 4.5 ×10−4

7 10 0.0277 0.0034 0.0043 2.4 ×10−4 0.0315 0.0041 0.0100 5.0 ×10−4

8 9 0.0042 0.0021 −0.0022 1.5 ×10−4 0.0022 0.0023 8.9 ×10−4 2.3 ×10−4

8 10 0.0083 0.0023 0.0014 1.7 ×10−4 0.0104 0.0024 0.0041 2.6 ×10−4

9 10 −0.0013 0.0017 1.2 ×10−4 6.3 ×10−5 −0.0070 0.0018 −1.9 ×10−5 1.4 ×10−4

Multivariate t distribution

6 7 0.0104 0.0032 0.0012 3.2 ×10−4 0.0024 0.0045 0.0083 8.6 ×10−4

with parameter set (4.2)

6 8 0.0249 0.0042 0.0076 4.1 ×10−4 0.0066 0.0046 0.0144 9.3 ×10−4

6 9 0.0350 0.0047 0.0084 4.5 ×10−4 0.0173 0.0047 0.0165 9.4 ×10−4

6 10 0.0460 0.0054 0.0085 4.8 ×10−4 0.0217 0.0051 0.0167 9.6 ×10−4

7 8 0.0011 0.0026 0.0017 1.8 ×10−4 0.0036 0.0036 0.0032 4.5 ×10−4

7 9 0.0139 0.0028 0.0042 2.2 ×10−4 0.0180 0.0037 0.0065 4.8 ×10−4

7 10 0.0237 0.0031 0.0050 2.3 ×10−4 0.0277 0.0038 0.0068 4.9 ×10−4

8 9 −0.0060 0.0021 9.3 ×10−4 1.2 ×10−4 0.0125 0.0032 −6.1 ×10−5 2.1 ×10−4

8 10 0.0043 0.0023 0.0011 1.3 ×10−4 0.0267 0.0033 −1.1 ×10−4 3.0 ×10−4

9 10 −0.0010 0.0018 −1.3 ×10−4 7.6 ×10−5 0.0110 0.0027 −3.4 ×10−4 1.6 ×10−4

For data simulation, multivariate normal, Np(µ,Σ) and multivariate t distributions, tp(µ,Σ, ν), for
p = 2 and the following two sets of parameters are employed.

µ =

(
5
7

)
, Σ =

(
20 17
17 15

)
, ν = 3, 10, (4.1)

µ =

(
5
7

)
, Σ =

(
20 10
10 15

)
, ν = 3, 10. (4.2)
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Table 4: ALs of PIs for multivariate normal and t distributions under parameter sets (4.1) and (4.2)

Depth function m t Parameter set (4.1) Parameter set (4.2)
Normal t with ν = 3 t with ν = 10 Normal t with ν = 3 t with ν = 10

Mahalanobis depth function

6 7 (0.0603,0.1122) (0.0045,0.0598) (0.0306,0.0952) (0.0608,0.1138) (0.0044,0.0584) (0.0307,0.0954)
6 8 (0.0489,0.1065) (0.0013,0.0505) (0.0192,0.0874) (0.0493,0.1080) (0.0012,0.0495) (0.0193,0.0877)
6 9 (0.0420,0.0981) (0.0004,0.0380) (0.0131,0.0761) (0.0423,0.0994) (0.0004,0.0373) (0.0132,0.0763)
6 10 (0.0372,0.0893) (0.0001,0.0269) (0.0093,0.0647) (0.0374,0.0904) (0.0001,0.0265) (0.0094,0.0650)
7 8 (0.0557,0.0965) (0.0031,0.0394) (0.0257,0.0744) (0.0557,0.0969) (0.0030,0.0383) (0.0259,0.0749)
7 9 (0.0459,0.0924) (0.0009,0.0335) (0.0164,0.0689) (0.0459,0.0927) (0.0008,0.0325) (0.0165,0.0694)
7 10 (0.0398,0.0860) (0.0003,0.0254) (0.0113,0.0608) (0.0398,0.0863) (0.0003,0.0247) (0.0113,0.0612)
8 9 (0.0509,0.0831) (0.0020,0.0245) (0.0215,0.0592) (0.0512,0.0840) (0.0020,0.0251) (0.0222,0.0610)
8 10 (0.0426,0.0800) (0.0006,0.0209) (0.0139,0.0552) (0.0428,0.0809) (0.0006,0.0214) (0.0142,0.0569)
9 10 (0.0469, 0.0730) (0.0012,0.0150) (0.0175,0.0455) (0.0471,0.0733) (0.0013,0.0157) (0.0184,0.0482)

Projection depth function

6 7 (0.1058,0.1128) (0.0282,0.0904) (0.0943,0.1387) (0.1433,0.1594) (0.0258,0.0913) (0.0952,0.1402)
6 8 (0.1029,0.1124) (0.0153,0.0845) (0.0781,0.1354) (0.1369,0.1582) (0.0154,0.0853) (0.0788,0.1369)
6 9 (0.1005,0.1115) (0.0088,0.0751) (0.0663,0.1299) (0.1321,0.1563) (0.0089,0.0758) (0.0670,0.1313)
6 10 (0.0985,0.1106) (0.0053,0.647) (0.0570,0.1235) (0.1280,0.1541) (0.0053,0.0654) (0.0575,0.1248)
7 8 (0.0927,0.0969) (0.0242,0.0782) (0.0929,0.1363) (0.1452,0.1613) (0.0243,0.0785) (0.0941,0.1381)
7 9 (0.0909,0.0967) (0.0131,0.0730) (0.0770,0.1330) (0.1388,0.1602) (0.0131,0.0733) (0.0779,0.1349)
7 10 (0.0893,0.0962) (0.0076,0.0649) (0.0654,0.1277) (0.1338,0.1583) (0.0076,0.0651) (0.0662,0.1295)
8 9 (0.0808,0.0834) (0.0199,0.0647) (0.0888,0.1296) (0.1440,0.1593) (0.0208,0.0673) (0.0899, 0.1312)
8 10 (0.0795,0.0833) (0.0108,0.0604) (0.0737,0.1266) (0.1377,0.1582) (0.0112,0.0628) (0.0745,0.1282)
9 10 (0.0715,0.0733) (0.0162,0.0530) (0.0835,0.1213) (0.1406,0.1547) (0.0170,0.0553) (0.0838,0.1218)

In the above sets, Σ is the covariance matrix for the multivariate normal distribution and the scatter
matrix for the multivariate t distribution. In the two parameter sets, only the off-diagonal entries in
Σ have been varied. For the parameter set (4.1), the correlation is more intense; the density is more
compressed, and generally, the contours form ellipses.

In each setting, 200 repetitions of independent random sample are generated sequentially and
then the m MD-based and PD-based records, r = {r1, . . . , rm} and their corresponding depth values,
z = {z1, . . . , zm}, for m = 6, 7, 8, 9, are extracted. Using the observed records and their depth values,
point predictors of depth values are computed as well as the corresponding prediction intervals (PI)
for t > m.

The MLP is derived from the solution of the equation (3.2) and according to equations (2.6) to
(2.9). Since this equation should be solved analytically, we use the Nelder-Mead method implemented
in the built-in maxLik function in the R package maxLik (Henningsen and Toomet, 2011) to maximize
the likelihood functions in terms of suitable parameter. Here, the record to be predicted is known as
the suitable parameter. Applying the optimization algorithm, one initial value for the parameter should
be allocated. Our suggestion for the specification of this initial value is the average of the depth values
related to the m observed depth-based records.

The CMP of depth values related to the tth depth-based record is resulted from the equation (3.4)
and its PI is derived from the interval (3.5).

The bias and MSPEs of the predictors are computed for each method over 200 replications and
these are all presented in Tables 1–3. Table 4 represents the average lengths (ALs) of 95% PI for the
depth value related to the future tth depth-based record, based on the relation (3.5).

From the results reported in the Tables 1–3, some general facts are derived. These outcomes
demonstrate proper predictions of depth values related to the future tth depth-based records. It can be
quickly deduced from the results that by increasing the number of observed records, the prediction
value gets closer to the actual value. Even when the gap between m and t is more less, predictions are
made more accurately.

It turns out that regardless of depth and distribution functions, biases and MSPEs associated with
the CMP are less than MLP. Nevertheless, conditional median procedure leads to more accurate pre-
dictions. Also, depth values related to the future Mahalanobis-based records are predicted more pre-
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Table 5: MD- and PD-based records in the term of TMP and AMT variables

MD-based record PD-based record
Record time Year (TMP, AMT) Depth Record time Year (TMP, AMT) Depth

1 1951 (0.99, 2.36) 0.290 1 1951 (0.99, 2.36) 0.294
13 1963 (0.99, 2.38) 0.233 2 1952 (0.99, 2.44) 0.203
21 1971 (0.99, 2.34) 0.179 13 1963 (0.99, 2.38) 0.197
48 1998 (0.99, 2.60) 0.144 57 2007 (0.99, 2.55) 0.163
57 2007 (0.99, 2.55) 0.097 66 2016 (0.99, 2.54) 0.127
66 2016 (0.99, 2.54) 0.070 - - - -

cisely than projection-based records.
Another derived conclusion from the above tables is when the Mahalanobis-based records are gen-

erated from multivariate normal distributions with parameters in (4.1) and have more intense contours,
MLPs of depth values have less biases and MSPEs. Such inductions can not be deduced from other
distributions and depth functions.

What can generally be concluded is that by increasing the number of the observed records, m,
prediction under both procedures, maximum likelihood and conditional median, is well done.

From Table 4, it is observed that PIs based on projection-based records under multivariate normal
distribution are narrower than Mahalanobis-based records. In addition, the difference between the
length of Mahalanobis-based and projection-based prediction intervals is notable. This issue is quit
the contrary for multivariate t distribution with ν = 3. In fact, PIs related to the depth values of the
future Mahalanobis-based records from t distribution with 3 degrees of freedom have shorter lengths
than projection-based records.

According to the results due to PIs, there is a clear evidence that predictions of depth values from
multivariate distributions with parameter set (4.1) perform same as parameter set (4.2). This is true
for both Mahalanobis and projection depth functions.

4.2. Data analysis

By considering a real dataset, we illustrate the performance of the ML and CM predictors of the
depth value related to the future depth-based records in practice. The dataset is about the Kerman-
shah city drought. It consists of two measurements, total monthly precipitation (TMP) and average
monthly temperature (AMT) during 66 water years, 1951–2016. The term water year is equivalent
to 12-months period for which precipitation totals are measured. In Iran, water year is defined the
period between September 23th of one year to September 22th of the following year. The data used
in this case are gathered by the department of meteorology of Kermanshah city, which is a sub-
set of Islamic Republic (I.R.) of Iran meteorological organization (IRIMO) and are accessible from
“www.kermanshahmet.ir”. These data have been previously analyzed earlier by Tat and Faridrohani
(2021).

Since the distribution of Kermanshah city did not follow from a multivariate normal distribution,
we applied a box-cox transformation to get a dataset with a multivariate normal distribution. The
MD-based and PD-based records along with the corresponding depth values were extracted from this
transformed dataset. The information about records is reported in the Table 5.

In view of the depth-based approach, 6 MD-based and 5 PD-based records are recognized during
66 water years for Kermanshah city. These records consist of both wetness and dryness records. For
more familiarity with them see Tat and Faridrohani (2021). In order to evaluate the performance of
prediction procedures in reality, we eliminated the last depth-based record and endeavored to predict
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Table 6: MLP and CMP of depth value related to the tth depth-based record

Depth function m s Zt ẐMLP
t ẐCMP

t (PI)
Mahalanobis 5 6 0.70 0.82 0.79 (0.565, 0.965)

Projection 4 5 0.127 0.143 0.138 (0.126, 0.163)

its depth value condition to the former records via ML and CM procedures from equations (3.2) and
(3.4).

The results of predictions of depth values related to the tth depth-based records condition to the first
m records are reported in the Table 6. It also contains the 95% prediction interval which is calculated
from the relation (3.5).

With regard to the displayed results in the above table, the CMP is closer to the actual value
than the MLP for both Mahalanobis and projection depth functions. It also should be noted that the
Mahalanobis depth function has made more accurate predictions than the projection depth function.

5. Concluding remarks

The problem of prediction is an important issue in the field of records. It has been studied thoroughly
for univariate records, while there is no entrance to prediction issue of multivariate records. For this
purpose, we selected depth-based record from different definitions of multivariate records. So this
paper can be considered a step forward in the problem of multivariate record prediction. Since a
depth-based record is recognized by its depth value, we decided to study the prediction problem in
two parts. In the first part, we focused on the prediction of depth values related to the depth-based
records which is undoubtedly an underlying step for the second part. For this purpose, we supposed
the observations are from multivariate normal or multivariate t distributions and records are recognized
by Mahalanobis and projection depth functions from these observations.

In this paper, we studied the problem of prediction of depth values related to the future depth-
based records through maximum likelihood (ML) and conditional median (CM) procedures. Besides,
we could build a prediction interval for depth values. Finally, we evaluated the performance of both
procedures by some simulation studies and a real dataset about Kermanshah city drought. Both results
of the simulations and real dataset demonstrated satisfactory perfomarnce for both MLP and CMP.

The second part dealing with the prediction problem of depth-based record values will be consid-
ered in the future works.
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