DOI QR코드

DOI QR Code

Whole genome sequence analyses of thermotolerant Bacillus sp. isolates from food

  • Received : 2023.04.13
  • Accepted : 2023.07.11
  • Published : 2023.09.30

Abstract

The Bacillus cereus group, also known as B. cereus sensu lato (B. cereus s.l.), is composed of various Bacillus species, some of which can cause diarrheal or emetic food poisoning. Several emerging highly heat-resistant Bacillus species have been identified, these include B. thermoamylovorans, B. sporothermodurans, and B. cytotoxicus NVH 391-98. Herein, we performed whole genome analysis of two thermotolerant Bacillus sp. isolates, Bacillus sp. B48 and Bacillus sp. B140, from an omelet with acacia leaves and fried rice, respectively. Phylogenomic analysis suggested that Bacillus sp. B48 and Bacillus sp. B140 are closely related to B. cereus and B. thuringiensis, respectively. Whole genome alignment of Bacillus sp. B48, Bacillus sp. B140, mesophilic strain B. cereus ATCC14579, and thermophilic strain B. cytotoxicus NVH 391-98 using the Mauve program revealed the presence of numerous homologous regions including genes responsible for heat shock in the dnaK gene cluster. However, the presence of a DUF4253 domain-containing protein was observed only in the genome of B. cereus ATCC14579 while the intracellular protease PfpI family was present only in the chromosome of B. cytotoxicus NVH 391-98. In addition, prophage Clp protease-like proteins were found in the genomes of both Bacillus sp. B48 and Bacillus sp. B140 but not in the genome of B. cereus ATCC14579. The genomic profiles of Bacillus sp. isolates were identified by using whole genome analysis especially those relating to heat-responsive gene clusters. The findings presented in this study lay the foundations for subsequent studies to reveal further insights into the molecular mechanisms of Bacillus species in terms of heat resistance mechanisms.

Keywords

Acknowledgement

This research was financially supported by the Faculty of Medicine, Thammasat University, Thailand. The grant number is 2-04/2565. This work was also supported by the Research Group in Multidrug Resistant Bacteria and the Entimicrobial Herbal Extracts, Faculty of Medicine, Thammasat University, and Thammasat University Research Unit in Nutraceuticals and Food Safety.

References

  1. Wijnands LM, Dufrenne JB, Zwietering MH, van Leusden FM. Spores from mesophilic Bacillus cereus strains germinate better and grow faster in simulated gastro-intestinal conditions than spores from psychrotrophic strains. Int J Food Microbiol 2006;112:120-128. https://doi.org/10.1016/j.ijfoodmicro.2006.06.015
  2. Altayar M, Sutherland AD. Bacillus cereus is common in the environment but emetic toxin producing isolates are rare. J Appl Microbiol 2006;100:7-14. https://doi.org/10.1111/j.1365-2672.2005.02764.x
  3. Owusu-Kwarteng J, Wuni A, Akabanda F, Tano-Debrah K, Jespersen L. Prevalence, virulence factor genes and antibiotic resistance of Bacillus cereus sensu lato isolated from dairy farms and traditional dairy products. BMC Microbiol 2017;17:65.
  4. Webb MD, Barker GC, Goodburn KE, Peck MW. Risk presented to minimally processed chilled foods by psychrotrophic Bacillus cereus. Trends Food Sci Technol 2019;93:94-105. https://doi.org/10.1016/j.tifs.2019.08.024
  5. Auger S, Galleron N, Bidnenko E, Ehrlich SD, Lapidus A, Sorokin A. The genetically remote pathogenic strain NVH391-98 of the Bacillus cereus group is representative of a cluster of thermophilic strains. Appl Environ Microbiol 2008;74:1276-1280. https://doi.org/10.1128/AEM.02242-07
  6. Kumari S, Sarkar PK. Bacillus cereus hazard and control in industrial dairy processing environment. Food Control 2016;69:20-29. https://doi.org/10.1016/j.foodcont.2016.04.012
  7. Scheldeman P, Herman L, Foster S, Heyndrickx M. Bacillus sporothermodurans and other highly heat-resistant spore formers in milk. J Appl Microbiol 2006;101:542-555. https://doi.org/10.1111/j.1365-2672.2006.02964.x
  8. Esteban MD, Huertas JP, Fernandez PS, Palop A. Effect of the medium characteristics and the heating and cooling rates on the nonisothermal heat resistance of Bacillus sporothermodurans IC4 spores. Food Microbiol 2013;34:158-163. https://doi.org/10.1016/j.fm.2012.11.020
  9. Caro-Astorga J, Frenzel E, Perkins JR, Alvarez-Mena A, de Vicente A, Ranea JA, et al. Biofilm formation displays intrinsic offensive and defensive features of Bacillus cereus. NPJ Biofilms Microbiomes 2020;6:3.
  10. Ryu JH, Beuchat LR. Biofilm formation and sporulation by Bacillus cereus on a stainless steel surface and subsequent resistance of vegetative cells and spores to chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer. J Food Prot 2005;68:2614-2622. https://doi.org/10.4315/0362-028X-68.12.2614
  11. Liu Y, Lai Q, Du J, Shao Z. Genetic diversity and population structure of the Bacillus cereus group bacteria from diverse marine environments. Sci Rep 2017;7:689.
  12. Liu Y, Ge W, Zhang J, Li X, Wu X, Li T, et al. Detection of Bacillus cereus sensu lato from environments associated with goat milk powdered infant formula production facilities. Int Dairy J 2018;83:10-16. https://doi.org/10.1016/j.idairyj.2018.02.005
  13. Alcaraz LD, Moreno-Hagelsieb G, Eguiarte LE, Souza V, Herrera-Estrella L, Olmedo G. Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics 2010;11:332.
  14. Zwick ME, Joseph SJ, Didelot X, Chen PE, Bishop-Lilly KA, Stewart AC, et al. Genomic characterization of the Bacillus cereus sensu lato species: backdrop to the evolution of Bacillus anthracis. Genome Res 2012;22:1512-1524. https://doi.org/10.1101/gr.134437.111
  15. Zhang Z, Yin L, Li X, Zhang C, Liu C, Wu Z. The complete genome sequence of Bacillus halotolerans ZB201702 isolated from a drought- and salt-stressed rhizosphere soil. Microb Pathog 2018;123:246-249. https://doi.org/10.1016/j.micpath.2018.07.019
  16. Owusu-Darko R, Allam M, Ismail A, Ferreira CAS, Oliveira SD, Buys EM. Comparative genome analysis of Bacillus sporothermodurans with its closest phylogenetic neighbor, Bacillus oleronius, and Bacillus cereus and Bacillus subtilis groups. Microorganisms 2020;8:1185.
  17. Zribi Zghal R, Ghedira K, Elleuch J, Kharrat M, Tounsi S. Genome sequence analysis of a novel Bacillus thuringiensis strain BLB406 active against Aedes aegypti larvae, a novel potential bioinsecticide. Int J Biol Macromol 2018;116:1153-1162. https://doi.org/10.1016/j.ijbiomac.2018.05.119
  18. Sornchuer P, Saninjuk K, Prathaphan P, Tiengtip R, Wattanaphansak S. Antimicrobial susceptibility profile and whole-genome analysis of a strong biofilm-forming Bacillus sp. B87 strain isolated from food. Microorganisms 2022;10:252.
  19. Sornchuer P, Tiengtip R. Prevalence, virulence genes, and antimicrobial resistance of Bacillus cereus isolated from foodstuffs in Pathum Thani Province, Thailand. Pharm Sci Asia 2021;48:194-203. https://doi.org/10.29090/psa.2021.02.19.119
  20. Periago PM, van Schaik W, Abee T, Wouters JA. Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579. Appl Environ Microbiol 2002;68:3486-3495. https://doi.org/10.1128/AEM.68.7.3486-3495.2002
  21. Clinical and Laboratory Standards Institute. In: Performance standards for antimicrobial susceptibility testing: 20th informational supplement. CLSI document M100-S20. Wayne, PA: Clinical and Laboratory Standards Institute, 2010.
  22. Gao T, Ding Y, Wu Q, Wang J, Zhang J, Yu S, et al. Prevalence, virulence genes, antimicrobial susceptibility, and genetic diversity of Bacillus cereus isolated from pasteurized milk in China. Front Microbiol 2018;9:533.
  23. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017;13:e1005595.
  24. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015;5:8365.
  25. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res 2017; 45:D535-D542. https://doi.org/10.1093/nar/gkw1017
  26. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312-1313. https://doi.org/10.1093/bioinformatics/btu033
  27. Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007;23:127-128. https://doi.org/10.1093/bioinformatics/btl529
  28. Flint S, Gonzaga ZJ, Good J, Palmer J. Bacillus thermoamylovorans: a new threat to the dairy industry. A review. Int Dairy J 2017;65:38-43. https://doi.org/10.1016/j.idairyj.2016.10.002
  29. Guinebretiere MH, Auger S, Galleron N, Contzen M, De Sarrau B, De Buyser ML, et al. Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning. Int J Syst Evol Microbiol 2013;63:31-40. https://doi.org/10.1099/ijs.0.030627-0
  30. Bobay LM, Ochman H. The evolution of bacterial genome architecture. Front Genet 2017;8:72.
  31. Hecker M, Schumann W, Volker U. Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 1996;19:417-428. https://doi.org/10.1046/j.1365-2958.1996.396932.x
  32. Liberek K, Georgopoulos C. Autoregulation of the Escherichia coli heat shock response by the DnaK and DnaJ heat shock proteins. Proc Natl Acad Sci U S A 1993;90:11019-11023. https://doi.org/10.1073/pnas.90.23.11019
  33. Schroder H, Langer T, Hartl FU, Bukau B. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J 1993;12:4137-4144. https://doi.org/10.1002/j.1460-2075.1993.tb06097.x
  34. Gamer J, Multhaup G, Tomoyasu T, McCarty JS, Rudiger S, Schonfeld HJ, et al. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. EMBO J 1996;15: 607-617. https://doi.org/10.1002/j.1460-2075.1996.tb00393.x
  35. Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell 1998;92:351-366. https://doi.org/10.1016/S0092-8674(00)80928-9
  36. Glover JR, Lindquist S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 1998;94:73-82. https://doi.org/10.1016/S0092-8674(00)81223-4
  37. LaBreck CJ, May S, Viola MG, Conti J, Camberg JL. The protein chaperone ClpX targets native and non-native aggregated substrates for remodeling, disassembly, and degradation with ClpP. Front Mol Biosci 2017;4:26.
  38. Tomoyasu T, Mogk A, Langen H, Goloubinoff P, Bukau B. Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol Microbiol 2001;40:397-413. https://doi.org/10.1046/j.1365-2958.2001.02383.x
  39. Gerth U, Kirstein J, Mostertz J, Waldminghaus T, Miethke M, Kock H, et al. Fine-tuning in regulation of Clp protein content in Bacillus subtilis. J Bacteriol 2004;186:179-191. https://doi.org/10.1128/JB.186.1.179-191.2004
  40. Engqvist MKM. Correlating enzyme annotations with a large set of microbial growth temperatures reveals metabolic adaptations to growth at diverse temperatures. BMC Microbiol 2018;18:177.