DOI QR코드

DOI QR Code

M Protein from Dengue virus oligomerizes to pentameric channel protein: in silico analysis study

  • Ayesha Zeba (Department of Life Sciences, Bangalore University) ;
  • Kanagaraj Sekar (Laboratory for Structural Biology and Bio-computing, Computational and Data Sciences, Indian Institute of Science) ;
  • Anjali Ganjiwale (Department of Life Sciences, Bangalore University)
  • Received : 2023.04.25
  • Accepted : 2023.07.11
  • Published : 2023.09.30

Abstract

The Dengue virus M protein is a 75 amino acid polypeptide with two helical transmembranes (TM). The TM domain oligomerizes to form an ion channel, facilitating viral release from the host cells. The M protein has a critical role in the virus entry and life cycle, making it a potent drug target. The oligomerization of the monomeric protein was studied using ab initio modeling and molecular dynamics simulation in an implicit membrane environment. The representative structures obtained showed pentamer as the most stable oligomeric state, resembling an ion channel. Glutamic acid, threonine, serine, tryptophan, alanine, isoleucine form the pore-lining residues of the pentameric channel, conferring an overall negative charge to the channel with approximate length of 51.9 Å. Residue interaction analysis for M protein shows that Ala94, Leu95, Ser112, Glu124, and Phe155 are the central hub residues representing the physicochemical interactions between domains. The virtual screening with 165 different ion channel inhibitors from the ion channel library shows monovalent ion channel blockers, namely lumacaftor, glipizide, gliquidone, glisoxepide, and azelnidipine to be the inhibitors with high docking scores. Understanding the three-dimensional structure of M protein will help design therapeutics and vaccines for Dengue infection.

Keywords

Acknowledgement

Anjali Ganjiwale acknowledges research funding from SERB, Department of Science and Technology (DST-TARE) grant, TAR/2022/000483, Govt. of India. Ayesha Zeba acknowledges fellowship support from Minority Welfare Department, Govt. of Karnataka, India.

References

  1. Gubler DJ. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 2002;10:100-103. https://doi.org/10.1016/S0966-842X(01)02288-0
  2. Perera R, Kuhn RJ. Structural proteomics of dengue virus. Curr Opin Microbiol 2008;11:369-377. https://doi.org/10.1016/j.mib.2008.06.004
  3. Guirakhoo F, Bolin RA, Roehrig JT. The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein. Virology 1992;191:921-931. https://doi.org/10.1016/0042-6822(92)90267-S
  4. Meng F, Badierah RA, Almehdar HA, Redwan EM, Kurgan L, Uversky VN. Unstructural biology of the Dengue virus proteins. FEBS J 2015;282:3368-3394. https://doi.org/10.1111/febs.13349
  5. Zhang Y, Corver J, Chipman PR, Zhang W, Pletnev SV, Sedlak D, et al. Structures of immature flavivirus particles. EMBO J 2003;22:2604-2613. https://doi.org/10.1093/emboj/cdg270
  6. Randolph VB, Winkler G, Stollar V. Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. Virology 1990; 174:450-458. https://doi.org/10.1016/0042-6822(90)90099-D
  7. Premkumar A, Horan CR, Gage PW. Dengue virus M protein C-terminal peptide (DVM-C) forms ion channels. J Membr Biol 2005;204:33-38. https://doi.org/10.1007/s00232-005-0744-9
  8. Breitinger U, Farag NS, Sticht H, Breitinger HG. Viroporins: structure, function, and their role in the life cycle of SARS-CoV-2. Int J Biochem Cell Biol 2022;145:106185.
  9. Nieva JL, Madan V, Carrasco L. Viroporins: structure and biological functions. Nat Rev Microbiol 2012;10:563-574. https://doi.org/10.1038/nrmicro2820
  10. Wong SS, Haqshenas G, Gowans EJ, Mackenzie J. The dengue virus M protein localises to the endoplasmic reticulum and forms oligomers. FEBS Lett 2012;586:1032-1037. https://doi.org/10.1016/j.febslet.2012.02.047
  11. Nambala P, Su WC. Role of zika virus prM protein in viral pathogenicity and use in vaccine development. Front Microbiol 2018;9:1797.
  12. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bio-informatics 2007;23:2947-2948.
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406-425.
  14. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015;10:845-858. https://doi.org/10.1038/nprot.2015.053
  15. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with Alpha-Fold. Nature 2021;596:583-589. https://doi.org/10.1038/s41586-021-03819-2
  16. Salamov AA, Solovyev VV. Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments. J Mol Biol 1995;247:11-15. https://doi.org/10.1006/jmbi.1994.0116
  17. Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021;373:871-876. https://doi.org/10.1126/science.abj8754
  18. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 2022;50:D439-D444. https://doi.org/10.1093/nar/gkab1061
  19. Eramian D, Eswar N, Shen MY, Sali A. How well can the accuracy of comparative protein structure models be predicted? Protein Sci 2008;17:1881-1893. https://doi.org/10.1110/ps.036061.108
  20. Shen MY, Sali A. Statistical potential for assessment and prediction of protein structures. Protein Sci 2006;15:2507-2524. https://doi.org/10.1110/ps.062416606
  21. Melo F, Sanchez R, Sali A. Statistical potentials for fold assessment. Protein Sci 2002;11:430-448. https://doi.org/10.1002/pro.110430
  22. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. Geometry-based flexible and symmetric protein docking. Proteins 2005;60:224-231. https://doi.org/10.1002/prot.20562
  23. Abraham M, Hess B, van der Spoel D, Lindahl E; GROMACS Development Team. GROMACS User Manual Version 2018. Uppsala: GROMACS Development Team, Royal Institute of Technology and Uppsala University, 2019. Accessed 2023 Apr 25. Available from: http://www.gromacs.org.
  24. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013;29:845-854. https://doi.org/10.1093/bioinformatics/btt055
  25. Bekker H, Berendsen HJ, Dijkstra EJ, Achterop S, Vondrumen R, Vanderspoel D, et al. Gromacs: a parallel computer for molecular-dynamics simulations. In: Physics Computing '92. (DeGroot RA, Nadrchal J, eds.). Singapore: World Scientific Publishing, 1993. pp. 252-256.
  26. Sehnal D, Svobodova Varekova R, Berka K, Pravda L, Navratilova V, Banas P, et al. MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J Cheminform 2013;5:39.
  27. Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model 2021;61:3891-3898. https://doi.org/10.1021/acs.jcim.1c00203
  28. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol 2015;1263:243-250. https://doi.org/10.1007/978-1-4939-2269-7_19
  29. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455-461. https://doi.org/10.1002/jcc.21334
  30. Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 2017;14:71-73. https://doi.org/10.1038/nmeth.4067
  31. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, et al. CHARMM general force field: a force field for druglike molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 2010;31:671-690. https://doi.org/10.1002/jcc.21367
  32. Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ, et al. PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res 2021;49:W530-W534. https://doi.org/10.1093/nar/gkab294
  33. Brinda KV, Vishveshwara S. Oligomeric protein structure networks: insights into protein-protein interactions. BMC Bioinformatics 2005;6:296.
  34. Morris JH, Huang CC, Babbitt PC, Ferrin TE. structureViz: linking Cytoscape and UCSF Chimera. Bioinformatics 2007;23:2345-2347. https://doi.org/10.1093/bioinformatics/btm329
  35. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera: a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605-1612. https://doi.org/10.1002/jcc.20084
  36. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498-2504. https://doi.org/10.1101/gr.1239303
  37. Thomaston JL, Polizzi NF, Konstantinidi A, Wang J, Kolocouris A, DeGrado WF. Inhibitors of the M2 proton channel engage and disrupt transmembrane networks of hydrogen-bonded waters. J Am Chem Soc 2018;140:15219-15226. https://doi.org/10.1021/jacs.8b06741
  38. Surya W, Li Y, Torres J. Structural model of the SARS coronavirus E channel in LMPG micelles. Biochim Biophys Acta Biomembr 2018;1860:1309-1317. https://doi.org/10.1016/j.bbamem.2018.02.017
  39. OuYang B, Xie S, Berardi MJ, Zhao X, Dev J, Yu W, et al. Unusual architecture of the p7 channel from hepatitis C virus. Nature 2013;498:521-525. https://doi.org/10.1038/nature12283
  40. Krishnappa CM, Rai P, Zeba A, Ganjiwale A. Residue interaction network analysis and molecular dynamics simulation of 6K viroporin: Chikungunya virus channel proteins. Int J Comput Biol Drug Design [Epub]. https://doi.org/10.1504/IJCBDD. 2023.10056106.
  41. Acharya R, Carnevale V, Fiorin G, Levine BG, Polishchuk AL, Balannik V, et al. Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus. Proc Natl Acad Sci U S A 2010;107:15075-15080. https://doi.org/10.1073/pnas.1007071107
  42. Jimenez-Guardeno JM, Nieto-Torres JL, DeDiego ML, Regla-Nava JA, Fernandez-Delgado R, Castano-Rodriguez C, et al. The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLoS Pathog 2014;10:e1004320.