DOI QR코드

DOI QR Code

Effect of CaO on the antibacterial property of zinc borosilicate glasses

Zinc borosilicate 유리의 CaO 첨가에 따른 항균력 개선 효과 검증

  • Minsung Hwang (Display Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jaeyeop Chung (Display Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 황민성 (한국세라믹기술원 디스플레이소재센터) ;
  • 정재엽 (한국세라믹기술원 디스플레이소재센터)
  • Received : 2023.09.18
  • Accepted : 2023.10.12
  • Published : 2023.10.31

Abstract

In this study, antibacterial glasses were developed by the addition of CaO in ZnO-Na2O-B2O3-SiO2 glass system. The effect of the addition of CaO on the thermal properties, dissolution properties, surface zeta potential and antibacterial activity were analyzed. Differential thermal analysis (DTA) analysis was performed to analyze the thermophysical properties of 30ZnO-xCaO-20Na2O-30B2O3-(20-x)SiO2 (x = 0, 2, 4, 6, 8, 10 mol%). It was confirmed that the glass transition temperature decreased as the CaO content increased. The amount of released Zn2+ ions and surface zeta potential of glass samples increased with increasing CaO concentration. For these reasons, the antibacterial activity was dramatically improved. By the addition of CaO, we could successfully develop an antibacterial glass with 99.9 % antibacterial activity against both Escherichia coli and Staphylococcus aureus.

본 연구에서는 ZnO-Na2O-B2O3-SiO2 계 유리에 CaO의 첨가에 따른 유리의 열적, 화학적 특성, 표면 제타전위 및 항균특성을 분석하였다. 유리 조성에 따른 열적 특성은 DTA 분석을 통해 확인하였고, 30ZnO-xCaO-20Na2O-30B2O3-(20-x)SiO2 (x = 0, 2, 4, 6, 8, 10 mol%)계 유리에서 CaO 함량이 증가함에 따라 유리전이온도가 줄어드는 것을 확인하였다. CaO 함량이 늘어날수록 유리 구조가 약화됨에 따라 더 많은 Zn2+ 이온이 용출되었고, 알칼리 및 알칼리 토류의 초기 급속한 용출로 인해 유리의 표면 제타전위가 증가함을 확인하였다. 이러한 이유로 유리의 항균활성 또한 급격하게 개선됨을 확인하였으며, 대장균(gram negative)과 황색포도상구균(gram positive) 모두에 대해 99.9 % 항균 활성을 갖는 항균 유리를 개발할 수 있었다.

Keywords

References

  1. A. Chorfa, N. Belkhir, F. Rubio and J. Rubio, "Silver diffusion and coloration of soda lime and borosilicate glasses", Ceram. - Silik. 56 (2012) 69. 
  2. C. Ozgur, F. Colak and O. San, "Preparation, characterization and antimicrobial property of micro-nano sized Na-borosilicate glass powder with spherical shape", J. Non-Cryst. Solids. 357 (2011) 116. 
  3. M.S.N. Shahrbak, F. Shatifianjazi, D. Rahban and A. Salimi, "A comparative investigation on bioactivity and antibacterial properties of sol-gel derived 58S bioactive glass substituted by Ag and Zn", Silicon. 11 (2019) 2741. 
  4. D. Boyd, H. Li, D.A. Tanner, M.R. Towler and J.G. Wall, "The antibacterial effects of zinc ion migration from zinc-based glass polyalkenoate cements", J. Mater. Sci. Mater. Med. 17 (2006) 489. 
  5. C. HyungJin, C. JinSeok, P. ByeongJu, E. JiHo, H. SoYoung, J. MinWook, A. KiSeok and Y. SoonGil, "Enhanced transparency, mechanical durability and antibacterial activity of zinc nanoparticles on glass substrate", Sci. Rep. 4 (2014). 
  6. C. Liu, M.X. Chen and M. Li, "Synthesis, crystal structures, catalytic application and antibacterial activities of Cu(II) and Zn(II) complexes bearing salicylaldehyde-imine ligands", Inorganica Chim. Acta. 508 (2020). 
  7. R. Jaya, S. Ray, P.V.C. Rao and V.C. Nettem, "Recent developments of nanomaterial doped paints for the minimization of biofouling in submerged structures", Mater. Sci. Forum. 657 (2010) 75. 
  8. S. Yamaguchi, T. Takeuchi, M. Ito and T. Kokubo, "CaO-B2O3-SiO2 glass fibers for wound healing", J. Mater. Sci. Mater. Med. 33 (2022). 
  9. P.B. Adams and D.L. Evans, "Chemical durability of borate glasses", J. Mater. Sci. Res. 12 (1978) 525. 
  10. R. Snellings, "Surface chemistry of calcium aluminosilicate glasses", J. Am. Ceram. Soc. 98 (2014) 303. 
  11. C.A.A. Chavez, L.M. Hollanda, A.A.A. Esquivel, A.A. Risco, S.D.A. Arcentales, J.A. Yanez and C.V. Gonzales, "Antibacterial and antifungal activity of functionalized cotton fabric with nanocomposite based on silver nanoparticles and carboxymethyl chitosan", Processes 10 (2022) 1088. 
  12. K. Kanehashi, "Structural roles of calcium in alkaline and alkaline-earth aluminosilicate glasses by solid-state 43Ca, 17O and 27Al NMR", Solid State Nucl. Magn. Reson. 84 (2017) 158.