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Abstract
Orchidaceae species account for one-tenth of all angiosperms including more than 30,000 
species having significant ecological, evolutionary, and economic importance. Despite 
Orchidaceae being one of the largest families among flowering plants, crucial cytogenetic 
information for studying species diversification, inferring phylogenetic relationships, and 
designing efficient breeding strategies is lacking, except for 10% or less of orchid species 
cases involving mostly chromosome number or karyotype analysis. Also, only approximately 
1.5% of the identified orchid species from less than a hundred genera have genome size data 
that provide crucial information for breeders and molecular geneticists. Various molecular 
cytogenetic techniques, such as fluorescence in situ hybridization (FISH) and genomic in situ 
hybridization (GISH), have been developed for determining ploidy levels, analyzing karyotypes, 
and evaluating hybridity, in several ornamental crops including orchids. The estimation of 
genome size and the determination of nuclear DNA content using flow cytometry have also 
been employed in some Orchidaceae subfamilies. These different techniques have played an 
important role in supplementing beneficial knowledge for effective plant breeding programs 
and other related plant research. This review focused on orchid breeding summarizes 
the status of current cytogenetic tools in terms of background, advancements, different 
techniques, significant findings, and research challenges. Principal roles and applications 
of cytogenetics in orchid breeding as well as different ploidy level determination methods 
crucial for breeding are also discussed. 
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Introduction
Orchidaceae, consisting of about 30,000 species belonging to 880 genera, is one of the largest families of flowering plants 

(Hsiao et al., 2011). Orchids are predominantly grown as ornamentals, consisting of a million-dollar cut-flower industry 

in most Asian countries with the most popular hybrids belonging to the genera Phalaenopsis, Cymbidium, Cattleya, and 

Oncidium (Chugh et al., 2009).

Orchids represent a highly advanced and terminal line of evolution in angiosperms with a unique and eccentric floral 

diversity and a large ploidy level disparity (Hsiao et al., 2011). Orchid breeding aims to produce hybrids with optimum 

floral quantity and morphology, blooming periods, and improved tolerance to stress (Pamarthi et al., 2019). Driven by the 

economic benefits, scientists are engaged in orchid biology, cytogenetics, and genomics research which is essential for 

successful breeding (Tsai et al., 2017).

Cytogenetic information, i.e., ploidy level, chromosome number, morphology, length, symmetry, and karyotype, are 

basic yet essential for understanding species differentiation and diversification (Raven, 1975), as well as for elucidating 

phylogenetic relationships between wild and cultivated species (Stace, 2000). Furthermore, mitotic and meiotic cytogenetic 

studies are crucial in checking the viability and stability of orchid hybrids (Kiihl et al., 2011). However, cytogenetic 

information is available in only 10% of orchids because of their high diversity in chromosome number and considerably 

small size (Sharma and Mukai, 2015). Lack of cytogenetic information and varying ploidy levels between species represent 

an additional persistent difficulty in transferring favorable genes of distantly related diploid wild species to commercial orchid 

hybrids (Chen et al., 2010). Thus, an enhanced understanding of orchid genomic makeup and polyploidy nature is necessary 

for designing an efficient breeding strategy (Jauhar, 2006).

This review highlights the role, significance, and applications of cytogenetic tools while discussing common challenges 

and technologies applied in orchid breeding.

Brief background of orchid breeding

Challenges in orchid breeding

Natural or induced polyploidization has provided the means for improving orchid species in terms of increased organ size, 

genome buffering, heterozygosity, and hybrid vigor which led to an increased level of fertility and stress tolerance (Hwang 

et al., 2019). However, orchid breeding is challenged by: 1) Inherently slow growth of species requiring approximately 2 - 3 

years to reach maturity (Kao et al., 2007); 2) Difficulties in species and interspecific hybrids identification using traditional 

methods (Vu et al., 2017); 3) Extensive intra- and inter-specific differences in ploidy levels creating genetic obstacles in 

introducing desirable traits; 4) Scarcity of polyploid wildtype germplasms, restricting polyploidization; and 5) Sterility of 

progenies resulting from hybridization of parents with different chromosome sizes or ploidy levels (Chen et al., 2010).

The first two aforementioned challenges have already been addressed in multiple reviews, while this paper aims to discuss 

the techniques used to resolve the remaining three.
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Technologies applied in orchid breeding

Micropropagation

Orchids were the first plants to be propagated in vitro, both from seeds or through tissue culture methods of vegetative 

parts. Chugh et al. (2009) have provided a detailed review of the different explants used in orchid micropropagation.

Molecular analysis for species identification

One of the most commonly used DNA marker techniques for cultivar identification analysis in orchids is the Random 

Amplified Polymorphic DNA (RAPD) (Kurniawati et al., 2019) because it is quick, cheap, does not require prior DNA 

sequencing, and provides robust estimates of intra-specific genetic diversity (Borowsky, 2001). Microsatellite markers are 

also considered useful for genotype characterization such as genotype analysis, population genetic analysis, and genetic 

mapping (Lee and Eo, 2016). A detailed summary of the available molecular markers and measurements for orchid 

identification is provided by Kumar et al. (2018) and Vu et al. (2017).

Next-Generation Sequencing (NGS) technologies

In many plant species, NGS technologies have augmented genomics research. Evolutionary studies on the genomic 

structure through sequencing provide knowledge on understanding relationships among different species (Choi et al., 2016). 

To date, four orchid genomes have been sequenced. Significant results were found for the following species: 1. Phalaenopsis 
equestris, expanded and diversified families of genes were found which are reported to possibly contribute to highly 

specialized orchid flower morphologies (Cai et al., 2015); 2. Dendrobium catenatum, the expansion of many resistance-

related genes, as well as extensive duplication of genes involved in glucomannan synthase activities, were observed (Zhang 

et al., 2016); 3. Dendrobium officinale, an important medicinal plant, the assembled genome is 1.23 Gb long with contig N50 

of 1.44 Mb (Yan et al., 2015); and 4. Apostasia shenzhenica, among the four orchid species, its genome sequencing revealed 

clear evidence of an ancient whole-genome duplication (WGD) shared by all orchids (Zhang et al., 2017). NGS technologies 

were also applied to orchids and were used to investigate their transcriptomes and systematically analyze their small RNAs, 

and these were summarized in a review published by Tsai et al. (2017). The gathered data in these genome sequencing 

analyses have provided a reference for studying orchid genome diversity and evolution.

Genome editing technologies

At present, gene editing techniques such as the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/

CRISPR-associated protein 9 (Cas9) system have been used to considerably accelerate and improve orchid breeding. In 

Phalaenopsis amabilis, CRISPR/Cas9 successfully mutated the Phytoene desaturase (PDS3) gene encoding the enzyme 

involved in the carotenoid biosynthesis pathway. The PDS3 mutants showed an albino phenotype in the leaf tissues (Semiarti 

et al., 2020). This technology was also able to produce a null mutant of the MADS gene in P. equestris, which is often highly 

expressed in floral organs and may have significance in flower initiation and development (Tong et al., 2020). In D. officinale, 

a 100% success rate was reported in knocking out the expression of several lignocellulose biosynthesis genes (Kui et al., 

2017). These studies laid the groundwork for the breeding of new orchid varieties with desirable trait genes via precise and 

speedy genome editing.
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Cytogenetics in breeding

Although the aforementioned technologies significantly contributed to the advancement of orchid research, no technique 

enabling direct observation of orchid chromosomes is available. Conventional and molecular cytogenetic tools have played a 

pivotal role in accelerating crop improvement, including the production of new cultivars by enhancing the crossing efficiency 

between valuable plant varieties (Hwang et al., 2019). Knowledge of chromosome pairing, genomic relationships between 

and within plant species, polyploidy, aneuploidy, and other chromosome-related properties have profoundly assisted the 

breeding of major flowering ornamental plants including orchids (Jauhar, 2006). Studies on chromosome meiotic and mitotic 

behavior in crossbred plants can aid the genetic viability and stability assessment of plants (Kiihl et al., 2011). Cytogenetic 

studies can also provide tools for the identification and differentiation of wild and domesticated species. In-depth analysis 

of genome size and ploidy levels in orchids using these tools can aid breeders establish breeding strategies including 

interspecific and interploidy hybridization (Lin et al., 2001).

In addition, artificial polyploidy induction using antimitotic agents has been used to produce improved hybrid orchid 

cultivars with unique phenotypic traits, higher content of medicinal ingredients, and greater adaptability and resistance (de 

Chandra et al., 2019). These chemicals, which are applied in vitro, interfere during cell division, generating chromosome 

duplication in plant cells (Germanà, 2012). The efficacy in producing artificial polyploid orchids depends on the type, 

concentration, and exposure time to the antimitotic agent, explant type and age, and in vitro induction protocol (Dhooghe et 

al., 2011; Vilcherrez-Atoche et al., 2022). Cytogenetic approaches are crucial in confirming the chromosomal duplication in 

these plants.

Ploidy level determination in orchids
Chromosomal content and ploidy levels should be determined to effectively cross two species and ensure that true 

hybrids with confirmed ploidy levels are produced. Among methods that have been employed in ploidy level determination, 

cytogenetic analysis is the most accurate (Sattler et al., 2016). The above mentioned methods may be direct or indirect based 

on whether actual observation of chromosomes is conducted. Direct methods involve the observation of chromosomes 

using microscopy techniques, whereas indirect methods do not require any chromosome analysis (Maluszynska, 2003). 

Comparisons and examples of these methods are provided in Table 1.

Chromosome counting for ploidy validation

The most common and established method used in determining ploidy levels in plants is chromosome counting, which has 

been proven to be effective and reliable (Hwang et al., 2019). Preparation of metaphase chromosomes for counting includes 

three basic steps: (1) sample collection and pre-treatment, (2) fixation, and (3) chromosome spreading and staining (Ochatt, 

2008). Root pre-treatment is a critical step during which the spindle fiber formation is blocked and chromosome metaphase 

is arrested facilitated by an increase in the cytoplasm viscosity, which is crucial for chromosome movement (Singh, 2016). 

The most commonly used microtubule inhibitors in orchids are 8-hydroxyquinoline and α–bromonaphthalene (Maluszynska, 

2003; Begum et al., 2009; Daviña et al., 2009; Lee et al., 2020).
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Table 1. Methods used in determining ploidy level in plants.
Method Ploidy level determination Necessary equipment Advantages Disadvantages References
Direct Chromosome 

counting
Comparison of chromosome 
base number 

Fluorescence 
microscope

Data can be obtained 
in two days

Labor-intensive, 
occasionally 
misleading

Maluszynska (2003); 
Yuan et al. (2009)

Indirect Flow cytometry Comparison of sample 
fluorescence density of 
previously known diploid or 
tetraploid standards

Flow cytometer Data can be obtained 
within a day

Expensive 
equipment, special 
techniques required to 
operate the machine 
and interpret data

Yuan et al. (2009)

Stomatal size Higher stomata sizes = higher 
ploidy level

Light microscope Ease of use Cytotype, physiology, 
and ecology should 
be considered

He et al. (2018)

Chloroplast number 
in guard cells

Chloroplast number per single 
stoma: 
< 10 (haploid) 11 - 15 
(diploids)  > 15 (polyploids)

Light microscope Ease of use No defined number 
of chloroplasts to 
distinguish between 
ploidy levels

Yuan et al. (2009); He 
et al. (2018)

Morphological 
observation

Bigger flowers; delayed and/
or prolonged flowering; 
altered length/width ratio 
of leaves; darker green 
coloration of leaves; thicker 
leaves and stems = polyploid

Digital caliper, color 
meter

No expensive 
equipment is required 

Growing plants until 
flowering is time-
consuming

Sakiroglu and Kaya 
(2012); He et al. 
(2018)

Chromosome number, size, morphology, and karyotypes vary in orchids even within the same genus. Mitotic chromosome 

preparation in orchids is challenging because: a) their cells have a low mitotic index and usually display early or late stages 

of cell division and b) their root tips are covered with multiple layers of velamen, a tissue, which plays an important role in 

water and nutrient uptake of epiphytic orchids (Sharma and Mukai, 2015). Chromosome numbers in orchids vary from 2n = 

10 to 240. Although high chromosome numbers are common, the most frequent is n = 19 or 20 (Daviña et al., 2009). Despite 

the difficulties in preparing metaphase chromosomes, classical cytogenetic methods have provided key information on the 

genetic variations and chromosome characterization among orchid species.

Indirect methods of ploidy estimation

Recently, advanced ploidy level determining techniques other than chromosome counting have been reported in some 

plant species. These techniques include flow cytometric analysis, stomatal size and density measurement, counting the 

number of chloroplasts in guard cells, and morphological observations (Maluszynska, 2003).

Flow cytometry is a powerful and accurate tool for verifying ploidy levels. However, in plants having a wide range of ploidy 

levels such as orchids, this method has several disadvantages such as a long time for generating samples (Doležel and Bartoš, 

2005) and poor reproducibility as reported in previous flow cytometric studies in certain orchid species (Hwang et al., 2019).

The stomatal assay method has been used to evaluate the ploidy levels in orchids such as Cymbidium (Russell, 2004) and 

Phalaenopsis (Chen et al., 2010). Measuring stomatal length and counting chloroplast numbers within the stoma typically 

conducted in this method, are accurate and inexpensive procedures but time-consuming (Beck et al., 2005).

Since ploidy level determination using morphological or anatomical assays alone has limitations, chromosome counting of 

root mitotic cells and flow cytometry should be applied in combination with other indirect methods to further validate ploidy 

levels (Vanstechelman et al., 2010).
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Molecular cytogenetic tools used in orchids
Although useful, conventional karyotyping methods have certain limitations in polyploid plants and are challenged by their 

variable physical characteristics of homologues, morphological similarities, relatively small-sized chromosomes, and the 

requirement for labor-intensive procedures (Dutrillaux et al., 2009). The development of advanced cytogenetic techniques 

using radioisotope labeled probes such as in situ hybridization (ISH), paved the way for the transition from the classical to 

modern molecular cytogenetics era (Jiang and Gill, 2006). In molecular cytogenetic techniques, DNA sequences are used as 

probes to locate specific target sequences on the chromosomes of a species of interest and visualize them using microscopy. 

The ISH methods evolved from using environmentally dangerous radioisotope-labeled probes, into fluorescence in situ 

hybridization (FISH) methods using fluorescence-based labeled probes. This technique is referred to as genomic in situ 

hybridization (GISH) in cases where whole genomes are used as probes. Overall, modern molecular cytogenetic tools enable 

a more precise identification and mapping of chromosomes (Devi et al., 2005). Moreover, in mutation breeding, molecular 

cytogenetic approaches play an important role as a quick assessment of the first genetic effects after mutagenic treatment 

(Vilcherrez-Atoche et al., 2022).

Fluorescence in situ hybridization

FISH provides basic information on ploidy level, chromosome characteristics, the parental origin of hybrids, etc. which 

are prerequisites of crossbreeding methods (Hwang et al., 2019). It has been extensively used to locate complementary 

DNA sequences in nuclei with the use of chromosome-specific probes labeled with fluorescent dyes (Hwang et al., 2011). 

Based on the material or procedure utilized, probe labeling can be direct or indirect when fluorochromes or haptens are used, 

respectively. The use of fluorochrome-labeled probes in direct labeling is more efficient due to shorter time requirements 

and clearer signals produced in highly repetitive sequences (Perumal et al., 2017). In indirect labeling, a hapten (typically 

biotin or digoxigenin)-labeled DNA probe forming an antibody-fluorochrome conjugate is used (Bishop, 2010). This 

method is suitable for the amplification of FISH signals from short DNA targets. FISH is a powerful tool for identifying 

karyotypes as well as physically mapping specific DNA sequences in chromosomes. The most commonly used probes for 

FISH karyotyping are the 5S and 45S ribosomal DNAs (rDNAs) consisting of conserved among plants tandem repeats. The 

number, size, and characteristic positions of rDNAs along chromosomes consist of useful markers for chromosome analysis 

(Heslop-Harrison, 2000). Basic FISH karyotype analyses using these probes have been performed in several orchid species 

listed in Table 2, revealing the complex genome organization of orchids. Aside from the different number of chromosomes, 

the number of 5S and 45S rDNA sites also varied in some wild orchids in Italy (D’emerico et al., 2001), and in some 

species belonging to the genera Maxillaria (Cabral et al., 2006), Cephalanthera (Moscone et al., 2007), and Paphiopedilum 

(Lee and Chung, 2008). In contrast, the number of chromosomes was common (2n = 40) in eight horticulturally important 

Cymbidium species from Northern-East India, and a single pair of 45S rDNA was found in all analyzed species, although 

three Cymbidium species showed a decondensed, dispersed, and extended form of rDNA FISH signal (Sharma et al., 2012).
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Table 2. List of orchid species with chromosome number and rDNA fluorescence in situ hybridization (FISH) data. (continued)

Genus Species name Chromosome number 
(2n) 

No. of rDNA loci
Reference 

5S 45S
Anacamptis A. collina (Banks & Sol. ex Russell) R.M. Bateman, Pridgeon & 

M.W. Chase 36 2 2 D’emerico et al. (2001)

A. gennarii (Rchb. f.) H. Kretzschmar, Eccarius & H. Dietr. 34 3 3
A. morio (L.) R.M. Bateman, Pridgeon & M.W. Chase 36 2 4
A. papilionacea (L.) R.M. Bateman, Pridgeon & M.W. Chase 32 4 2

Barlis  B. robertiana (Loisel.) Greuter 36 2 2
Cephalantera C. damasonium (Mill.) Druce 36 4 2 Moscone et al. (2007)

C. longifolia (L.) Fritsch. 32 6 2
C. rubra (L.) Rich. 44 2 4

Cymbidium C. aloifolium Wall. 40 - 2 Sharma et al. (2012)
C. cyperifolium Wall. ex Lindl. 40 - 2
C. elegans Lindl. 40 - 2
C. hookerianum Rchb. f. 40 - 2
C. iridioides D. Don 40 - 2
C. mastersii Griff. ex Lindl. 40 - 2
C. tigrinum Parish ex Hook. f. 40 - 2
C. tracyanum L. Castle. 40 - 2

Dendrobium D. aggregatum Roxb. 38 2 2 Begum et al. (2009)
D. aphyllum (Roxb.) Fisch 38 2 4
D. moschatum (Buch.-Ham.) Sw. 40 2 6

Heterotaxis H.  brasiliensis (Brieger & Illg) F. Barros 42 2 4 Moraes et al. (2016)
H. equitans (Brieger & Illg) F. Barros 42 4 4
H. superflua (Rchb. f.) F. Barros 42 2 4
H. valenzuelana (A. Rich.) Ojeda & Carnevali 40 2 2
H. villosa (Barb. Rodr.) F. Barros 42 2 4
H. violaceopunctata (Rchb. f.) F. Barros 42 2 4

Mapinguari M. desvauxiana (Rchb. f.) Carnevali & R.B. Singer 40 4 2
Maxillaria M. acicularis Herb. ex Lindl. 38 4 4 Cabral et al. (2006)

M. discolor Rchb. 42 2 4
M. notylioglossa Rchb. f. 38 4 2

Paphiopedilum P. acmodontum M.W. Wood 38 4 2 Lan and Albert (2011)
P. adductum Asher 26 32 9
P. armeniacum S.C. Chen & F.Y. Liu 26 2 4
P. bellatulum Pfitzer 26 2 2
P. curtisii Pfitzer 36 2 2
P. dayanum Pfitzer 36 10 2
P. delenatii Guillaumin 26 2 2
P. dianthum Tang & F.T. Wang 26 32 2
P. druryi Pfitzer 30 20 2
P. emersonii Koop. & P.J. Cribb 26 2 4
P. fairrieanum (Lindl.) Stein 26 16 2
P. gigantifolium Braem. M.L. Baker & C.O. Baker 26 38 6
P. glanduliferum Pfitzer 26 30 4
P. hangianum Perner & O. Gruss 26 2 4
P. haynaldianum Pfitzer 26 12 4
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BAC-FISH, using genomic DNA cloned in large-insert vectors such as bacterial artificial chromosomes (BACs) in 

combination with FISH, has been shown to be an efficient technique for physically mapping specific DNA sequences and 

identifying individual chromosomes and chromosome-specific markers in large genome plants such as orchids (Sharma 

and Mukai, 2015). Two BAC libraries constructed for P. equestris, provided insights into the complex genome of the above 

species in terms of guanine-cytosine (GC) content, transposable elements presence, protein-coding regions, SSRs, and 

potential microsynteny between Phalaenopsis and other plant species (Hsu et al., 2011). BAC-FISH analysis conducted 

by Matsuba et al. (2015) in two orchid species, Neofinetia falcata, and Rhynchostylis coelestis, mapped the distribution 

of certain repetitive sequences in orchid chromosomes and provided a chromosome-based comparison of specific regions 

between the two species and their hybrids.

In other plant species, FISH has also been used in giving a comprehensive evaluation of the effects of various mutagens on 

the plant genome that are observed as chromosomal aberrations, including micronuclei. Knowledge on the composition and 

genetic activity of the chromatin that is involved in micronuclei can be revealed by FISH. This information is important as 

it could be related to the ability of this chromatin to exert proper DNA expression and DNA repair (Kwasniewska and Bara, 

2022). In Brachypodium distachyon, the use of centromeric and telomeric FISH probes provided information regarding the 

Table 2. List of orchid species with chromosome number and rDNA fluorescence in situ hybridization (FISH) data. 

Genus Species name Chromosome number 
(2n) 

No. of rDNA loci
Reference 

5S 45S
P. hennisianum (M.W. Wood) Fowlie 34 8 2
P. henryanum Braem 26 19 2
P. hirsutissimum Pfitzer 26 27 2
P. liemianum (Fowlie) K. Karas. & K. Saito 32 26 2
P. lowii Pfitzer 26 32 6
P. malipoense S.C. Chen & Z.H. Tsi 26 2 2
P. micranthum Tang & F.T. Wang 26 2 4
P. moquettianum  34 24 2
P. niveum Pfitzer 26 2 2
P. parishii Pfitzer 26 38 4
P. primulinum M.W. Wood & P. Taylor 32 29 2
P. purpuratum Pfitzer 40 12 2
P. randsii Fowlie 26 34 4
P. sanderianum Pfitzer 26 20 2
P. sangii Braem 38 22 2
P. stonei Pfitzer 26 29 2
P. sukhakulii Schoser & Senghas 40 15 2
P. supardii Braem & U.W.A. Löb. 26 30 9
P. tigrinum Koop. & N. Haseg. 26 23 2
P. venustum (Wall. ex Sims) Pfitzer 40 12 2
P. victoria-regina (Sander) M.W. Wood 34 28 2
P. wardii Summerh. 42 4 2

Phalaenopsis P. aphrodite Rchb. f. 38 4 4 Kuo et al. (2016)
P. equestris (Schauer) Rchb. f. 38 2 0

Vanda Vanda sp. 38 4 2 Sharma and Mukai (2015)
Retrieved from https://www.plantrdnadatabase.com/.
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origin of the micronucleus that were induced by X-radiation (Kus et al., 2017). Chromosome rearrangements are usually 

observed in meiocytes of presumptive orchid allopolyploids, along with micronuclei in tetrads (Bolanos-Villegas et al., 2008). 

Although fluorescent methods, such as DAPI (4’,6-diamidino-2-phenylindole) or acridine orange staining have already been 

used for micronuclei detection (Dias et al., 2005), to date, FISH has not yet been used investigating micronuclei present in 

both wild and cultivated orchids.

Genomic in situ hybridization

GISH follows the same principle as FISH except that it uses (1) the total genomic DNA of a genitor involved in the hybrid 

formation and (2) unlabeled DNA from another genitor (i.e., the blocking DNA) as probes (Silva and Souza, 2013). For 

hybrids derived from closely related, high homologous species, increasing the concentration of blocking DNA is necessary 

to avoid indiscriminate genome labeling of both parents (Brammer et al., 2009). GISH allows the characterization of the 

genome and chromosomes of hybrid plants, allopolyploid and interspecific introgression lines and thus, the deciphering of 

ancestry in hybrid and polyploid species (Devi et al., 2005).

GISH has aided the elucidation of the genome organization and the relationships of seven interspecific hybrids of 

Phalaenopsis with varying genome sizes. However, the strength and distribution of GISH hybridization signals were 

indistinguishable in hybrids whose parents had similar genomes. Furthermore, all large genome species had chromosomes 

that produced strong hybridization signals which indicates that such species contain abundant repetitive sequences (Lin et al., 

2001). GISH was also able to provide a clear distinction between the parental genomes and the resulting interspecific hybrids, 

e.g., Paphiopedilum delenatti × Paphiopedilum glaucophyllum (Lee and Chung, 2008). Furthermore, Lee et al. (2011) 

reported the successful use of GISH for the differentiation and visualization of the chromosome pairing affinities between 

parental genomes in interspecific F1 hybrids of Paphiopedilum, allowing the determination of the phylogenetic distances 

among these species. In harlequin and novel cultivars of Phalaenopsis possessing large and/or asymmetrical chromosomes, 

utilizing GISH is necessary for detecting the differential introgression of larger chromosomes and/or their segments and 

tracing valuable for future breeding horticultural traits associated with the remaining large chromosomes (Lee et al., 2020).

Interspecific hybrids have been developed for the improvement of ornamental plants like orchids, introducing traits that 

can enhance crop performance such as resistance to pests and diseases, better flower shape and color, etc. (Hwang et al., 

2019). Species intercrossing between subgenera may result in sterile or low fertility progeny due to irregular chromosome 

pairing. GISH can contribute to understanding and tackling the problems that may occur during breeding program crosses 

through the visualization of meiosis in hybrids, revealing whether pairing only occurs between homologous or heterologous 

chromosomes (Silva and Souza, 2013).

Flow cytogenetics

Plant genome size information is crucial in breeding programs and provides insights into a genus which is helpful in 

improving breeding strategies (Doležel and Bartoš, 2005). Several methods have been employed to estimate plant genome 

sizes and currently, the most widely recommended is flow cytometry (FCM) due to a number of advantages such as high data 

throughput, ease of sample preparation, low quantity requirements, and high accuracy (Trávníček et al., 2015). The precise 

determination of genome size is important since it provides essential information for breeders and molecular geneticists. 

Moreover, comparative analysis of nuclear DNA content is valuable in conducting cytotaxonomic and evolutionary studies 
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(Lin et al., 2001).

Despite being one of the largest and most diverse angiosperm families, genome size data is available in only approximately 

1.5% of the identified orchid species from less than a hundred genera. To date, all five Orchidaceae subfamilies (i.e., 

Apostasioideae, Vanillodeae, Cypripediodeae, Orchidoideae, and Epidendroideae) have been characterized in regard to 

genome size (Chen et al., 2013). Among these, Epidendroideae has the most diverse genome size with values varying over 

60-fold, although the majority of its species possess small genomes. Moreover, aside from displaying a wide variation in 

chromosome numbers, Orchidaceae shows a remarkable variation in 2C DNA content, almost 170-fold ranging from 1C = 

0.33 pg in Trichocentrum maduroi to 55.4 pg in Pogonia ophioglossoides (Sharma and Mukai, 2015).

An organ-specific degree of endopolyploidy has been observed in several orchid species and hybrids (Chen et al., 2010). 

This fact in combination with the lack of 2C nuclei in different plant organs, as well as the occurrence of both conventional 

endopolyploidy and progressively partial endoreplication (PPE) in orchids, may cause incorrect FCM estimates. Trávníček 

et al. (2015) highlighted the challenges in estimating nuclear genome size using flow cytometry in orchids and proposed 

a method to avoid misinterpretation of DNA content histograms. However, due to the various genome sizes of orchids, 

predicting the ploidy of the species based only on the C-value measured by flow cytometry is difficult thus, additional 

confirmation of the results with the conventional cytogenetic technique of chromosome counting using root tip cells arrested 

in metaphase is required (Ochatt, 2008).

Conclusion
Considering all the conducted orchid chromosome studies, it can be concluded that great potential exists in investigating 

these species at the cytogenetic level. Although conventional methods of chromosome research allow the identification and 

observation of the ploidy level, numerical and structural variations in chromosomes, and meiotic behavior of chromosomes, 

deeper cytogenetic and genomic information are required in order to develop efficient breeding strategies for improving 

orchid cultivars (Sharma and Mukai, 2015). Molecular cytogenetic techniques such as FISH, GISH, and flow cytometry 

have played an essential role in providing supplemental information to be used for efficient plant breeding programs and 

other related research. The contribution of these techniques in obtaining the chromosomal characteristics of plants in a 

more accurate and efficient way is undisputed. The continuous advancement of cytogenetic tools leading to innovations in 

chromosome engineering will be of immense importance in the development of meaningful breeding programs, such as the 

applications of haploid induction, conversion of meiosis into mitosis to produce diploid gametes that are clones of the parent 

plant, and new homologous recombination technologies (Chan, 2010), for the improvement of orchids. Overall, cytogenetic 

data in conjunction with molecular markers should aid in the accurate study of genetic diversity and provide new insights 

into the genome architecture of orchids.
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