DOI QR코드

DOI QR Code

Effects of Curcuma aromatica or inositol monophosphate supplementation on growth performance and immune status of lactating sows and piglets

  • Md Mortuza Hossain (Department of Animal Resource and Science, Dankook University) ;
  • Chai Bin Lim (Department of Animal Resource and Science, Dankook University) ;
  • In Ho Kim (Department of Animal Resource and Science, Dankook University)
  • Received : 2023.02.15
  • Accepted : 2023.05.11
  • Published : 2023.06.01

Abstract

The aim of the present study was to investigate the influences of Curcuma aromatica or inositol monophosphate supplementation on body weight of sows at different stages, feed intake, backfat thickness of sows at different stages, body weight of piglets at different stages, and immunoglobulin G (IgG) concentration in sow blood and milk. Eighteen crossbred (Landrace × Yorkshire) sows (249.9 ± 3.2 kg) and their litters were used in a 28-day feeding trial to observe the effects of Curcuma aromatica or inositol monophosphate as dietary supplements on performance and IgG concentration of blood and milk in lactating sows and piglets. The dietary treatments comprised a control corn-soybean-based basal diet (CON); control diet + Curcuma aromatica at 0.5% (CA), and control diet + inositol monophosphate at 0.10% (IMP). Sow body weight at different stages, average daily feed intake, and sow backfat thickness at different stages were not affected in all three treatment groups. The body weight of piglets at weaning and average daily gain of piglets born to sows from the IMP group showed significant improvement compared to piglets of sows from the CA treatment group. Treatment had no effect on the IgG levels in blood and milk. In conclusion, supplementation of 0.5% CA or 0.10% IMP in sows has no effect on growth performance and IgG in sows and piglets compared with the control diet.

Keywords

References

  1. Alagbe J. 2017. Growth performance and blood parameters of weaner pigs fed diets supplemented with turmeric powder. Journal of Agricultural Science 7:57-61.
  2. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2002. Molecular biology of the cell. 4th edition. Garland Science, NY, USA.
  3. Al-Sultan SI, Gameel AA. 2004. Histopathological changes in the livers of broiler chicken supplemented with turmeric (Curcuma longa). International Journal Poultry Science 3:333-336. https://doi.org/10.3923/ijps.2004.333.336
  4. Anoop K. 2015. Curcuma aromatica salisb: A multifaceted spice. International Journal of Phytopharmacology Research 6:10-15.
  5. Araujo CAC, Leon LL. 2001. Biological activities of Curcuma longa L. Memorias do Instituto Oswaldo Cruz 96:723-728. DOI:10.1590/s0074-02762001000500026.
  6. Bate CA, Taverne J, Bootsma HJ, Mason RC, Skalko N, Gregoriadis G, Playfair JH. 1992. Antibodies against phosphatidylinositol and inositol monophosphate specifically inhibit tumour necrosis factor induction by malaria exoantigens. Immunology 76:35-41.
  7. Biswas S, Kim IH. 2022. Effect of milk flavor supplementation on growth performance, nutrient digestibility, fecal score, and blood profiles in weaning piglets. Korean Journal of Agricultural Science 49:441-450. https://doi.org/10.7744/KJOAS.20220039
  8. Bock P, Klaushofer K. 1975. Enzymlokalisation in licht-und elektronenmikroskopischen Bereich: Die 5'-Nucleotidase. Wiener Klinische Wochenschrift 87:722-725. [in German]
  9. Breves G, Schroder B. 1991. Comparative aspects of gastrointestinal phosphorus metabolism. Nutrition Research Reviews 4:125-140. DOI:10.1079/NRR19910011.
  10. Devillers N, Farmer C, Mounier AM, Dividich JL, Prunier A. 2004. Hormones, IgG and lactose changes around parturition in plasma, and colostrum or saliva of multiparous sows. Reproduction, Nutrition, Development 44:381-396. DOI:10.1051/rnd:2004043.
  11. Gerasimenko JV, Flowerdew SE, Voronina SG, Sukhomlin TK, Tepikin AV, Petersen OH, Gerasimenko OV. 2006. Bile acids induce Ca2+ release from both the endoplasmic reticulum and acidic intracellular calcium stores through activation of inositol trisphosphate receptors and ryanodine receptors. Journal of Biological Chemistry 281:40154-40163. DOI:10.1074/jbc.M606402200.
  12. Hawthorne JN, White DA. 1976. Myo-inositol lipids. Vitamins and Hormones 33:529-573. DOI:10.1016/S0083-6729(08)60972-3.
  13. Holub BJ. 1986. Metabolism and function of myo-inositol and inositol phospholipids. Annual Review of Nutrition 6:563-597. DOI:10.1146/annurev.nu.06.070186.003023.
  14. Hossain MM, Cho SB, Kim IH. 2022. Effects of adding graded levels of Achyranthes japonica root extract to low crude protein diet on growth performance, nutrient digestibility, fecal microbiota, and meat quality parameters in broilers. Canadian Journal of Animal Science 103:26-32. DOI:10.1139/cjas-2022-0092.
  15. Islam R, Hossain MM, Nargis F, Hossain ME. 2020. Administration of garlic and neem in broiler diet for safe meat production. Bangladesh Journal of Animal Science 48:116-126. DOI:10.3329/bjas.v48i2.46766.
  16. Jiang WD, Feng L, Liu Y, Jiang J, Zhou XQ. 2009. Myo-inositol prevents oxidative damage, inhibits oxygen radical generation and increases antioxidant enzyme activities of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture Research 40:1770-1776. DOI:10.1111/j.1365-2109.2009.02283.x.
  17. Kaliyadasa E, Samarasinghe BA. 2019. A review on golden species of Zingiberaceae family around the world: Genus Curcuma. African Journal of Agricultural Research 14:519-531. https://doi.org/10.5897/AJAR2018.13755
  18. Kanase V, Khan F. 2018. An overview of medicinal value of Curcuma species. Asian Journal of Pharmaceutical and Clinical Research 11:40-45 DOI:10.22159/ajpcr.2018.v11i12.28145.
  19. Larner J. 2002. D-Chiro-Inositol-Its functional role in insulin action and its deficit in insulin resistance. Journal of Diabetes Research 3:47-60. DOI:10.1080/15604280212528.
  20. Le Dividich J, Rooke JA, Herpin P. 2005. Nutritional and immunological importance of colostrum for the new-born pig. Journal of Agricultural Science 143:469-485. DOI:10.1017/S0021859605005642.
  21. Lokova MY, Buzuk GN, Sokolova SM, Kliment-eva NI. 2001. Chemical features of medicinal plants. Applied Biochemistry and Microbiology 37:229-237.
  22. Ma F, Xu S, Tang Z, Li Z, Zhang L. 2021. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosafety and Health 3:32-38. DOI:10.1016/j.bsheal.2020.09.004.
  23. Maneewan C, Yamauchi K, Mekbungwan A, Maneewan B, Siri S. 2012. Effect of turmeric (Curcuma longa Lennaeus) on growth performance, nutrient digestibility, hematological values, and intestinal histology in nursery pigs. Journal of Swine Health and Production 20:231-240.
  24. Michell RH. 2008. Inositol derivatives: Evolution and functions. Nature Reviews. Molecular Cell Biology 9:151-161. https://doi.org/10.1038/nrm2334
  25. Moran K, Wilcock P, Elsbernd A, Zier-Rush C, Boyd RD, van Heugten E. 2019. Effects of super-dosing phytase and inositol on growth performance and blood metabolites of weaned pigs housed under commercial conditions. Animal Science Journal 97:3007-3015. DOI:10.1093/jas/skz156.
  26. NRC (National Research Council). 2012. Nutrient requirement of swine. 11th ed. National Academy Press, Washington, D.C., USA.
  27. Nunes ACS, Vianna GR, Cuneo F, Amaya-Farfan J, de-Capdeville G, Rech EL, Aragao FJ. 2006. RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta 224:125-132. DOI:10.1007/s00425-005-0201-0.
  28. Ogunribido TZ, Bedford MR, Adeola O, Ajuwon KM. 2022. Effects of supplemental myo-inositol on growth performance and apparent total tract digestibility of weanling piglets fed reduced protein high-phytate diets and intestinal epithelial cell proliferation and function. Journal of Animal Science 100:187. DOI:10.1093/jas/skac187.
  29. Overduin M, Cheever ML, Kutateladze TG. 2001. Signaling with phosphoinositides: Better than binary. Molecular Interventions 1:150-159.
  30. Parthasarathy LK, Seelan RS, Tobias C, Casanova MF, Parthasarathy RN. 2006. Mammalian inositol 3-phosphate synthase: Its role in the biosynthesis of brain inositol and its clinical use as a psychoactive agent. Subcellular Biochemistry 39:293-314. DOI:10.1007/0-387-27600-9_12.
  31. Pirgozliev V, Allymehr M, Sarwar S, Acamovic T, Bedford MR. 2007. The effect of dietary inositol on performance and mucin excretion when fed to chickens.British Poultry Abstracts 3:4-5.
  32. Quesnel H, Farmer C, Devillers N. 2012. Colostrum intake: Influence on piglet performance and factors of variation. Livestock Science 146:105-114. DOI:10.1016/j.livsci.2012.03.010.
  33. Rashid MH, Das SC, Hossain MM, Hossain ME. 2020. Effects of garlic and green tea as alternative feed additives in broiler diet. Journal of Bangladesh Agricultural University 18:1013-1020. DOI:10.5455/JBAU.2939.
  34. Rooke JA, Carranca C, Bland IM, Sinclair AG, Ewen M, Bland VC, Edwards SA. 2003. Relationships between passive absorption of immunoglobulin G by the piglet and plasma concentrations of immunoglobulin G at weaning. Livestock Production Science 81:223-234. DOI:10.1016/S0301-6226(02)00260-9.
  35. Scharek L, Guth J, Reiter K, Weyrauch KD, Taras D, Schwerk P, Schierack P, Schmidt MF, Wieler LH, Tedin K. 2005. Influence of a probiotic Enterococcus faecium strain on development of the immune system of sows and piglets. Veterinary Immunology and Immunopathology 105:151-161. DOI:10.1016/j.vetimm.2004.12.022.
  36. Sikha A, Harini A, Hegde Prakash L. 2015. Pharmacological activities of wild turmeric (Curcuma aromatica Salisb): A review. Journal of Pharmacognosy and Phytochemistry 3:1-4.
  37. Sorum H, Sunde M. 2001. Resistance to antibiotics in the normal flora of animals. Veterinary Research 32:227-241. DOI:10.1051/vetres:2001121.
  38. Steger DJ, Haswell ES, Miller AL, Wente SR, O'Shea EK. 2003. Regulation of chromatin re modelling by inositol polyphosphates. Science 299:114-116. DOI:10.1126/science.1078062.
  39. Uarquin FG, Rodehutscord M, Huber K. 2019. Myo-inositol: its metabolism and potential implications for poultry nutrition-a review. Poultry Science 99:893-905. https://doi.org/10.1016/j.psj.2019.10.014