DOI QR코드

DOI QR Code

Assessment of Phenolic Content, Saponin Content, and Antioxidant Activities in Gray, Red, and White Adzuki Bean Germplasm: A Multivariate Analysis

  • Kebede Taye Desta (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hyemyeong Yoon (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Myoung-Jae Shin (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Sukyeung Lee (International Technology Cooperation Center, Technology Cooperation Bureau, Rural Development Administration) ;
  • Xiaohan Wang (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Yu-Mi Choi (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Young-ah Jeon (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • YoungKwang Ju (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • JungYoon Yi (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration)
  • Received : 2023.07.14
  • Accepted : 2023.08.02
  • Published : 2023.09.01

Abstract

Seed color is controlled by several genes and is a key trait in determining the metabolite content and biological activities of legume genotypes. In this study, 296 adzuki bean accessions, including 159 grey, 99 red, and 38 white adzuki beans, were grown in Korea. Variations in total phenolic content (TPC), total saponin content (TSC), DPPH scavenging activity, ABTS•+ scavenging activity, and ferric reducing antioxidant power (FRAP) were assessed and were reported to be in the ranges of 1.52-8.24 mg GAE/g, 14.36-114.22 mg DE/g, 0.23-12.84 mg AAE/g, 1.05-17.66 mg TE/g, and 0.59-13.14 mg AAE/g, respectively, with a wide variation across adzuki beans. Except for DPPH scavenging activity, the average values declined in the order gray > red > white adzuki beans, each demonstrating a significant variation (p < 0.05). White adzuki beans, which showed low metabolite content and antioxidant activity, were clearly separated from the gray and red genotypes using principal component and hierarchical cluster analyses. Moreover, TPC, TSC, and antioxidant activities were strongly correlated, regardless of seed color. Overall, the diversity of the TPC, TSC, and antioxidant activity in a broad population of adzuki bean genotypes was determined. Furthermore, this study found that seed color variation in adzuki beans had a significant effect on the metabolite content and antioxidant activity. Superior accessions with high levels of TPC, TSC, and antioxidant activity were also discovered and could be used for functional plant breeding and human consumption. The findings of this study may be useful for understanding the relationship between seed coat color and metabolite concentration in adzuki beans, paving the way for molecular-level analyses.

Keywords

Acknowledgement

This research was funded by the Research Program for Agricultural Science and Technology Development (Project No. PJ015788) of the National Institute of Agricultural Sciences, Rural Development Administration (Jeonju, Korea).

References

  1. Chiu, K. Y. 2021. Changes in microstructure, germination, sprout growth, phytochemical and microbial quality of ultrasonication treated adzuki bean seeds. Agronomy 11(6) : 1093. https://doi.org/10.3390/agronomy11061093
  2. Chu, L., P. Zhao, X. Huang, B. Zhao, Y. Li, K. Yang, and P. Wan. 2021a. Genetic analysis of seed coat colour in adzuki bean (Vigna angularis L.). Plant Genetic Resources : Characterisation and Utilisation 19(1) : 67-73. https://doi.org/10.1017/S1479262121000101
  3. Chu, L., P. Zhao, K. Wang, B. Zhao, Y. Li, K. Yang, and P. Wan. 2021b. VaSDC1 Is Involved in Modulation of Flavonoid Metabolic Pathways in Black and Red Seed Coats in Adzuki Bean (Vigna angularis L.). Frontiers in Plant Science 12 : 679892. https://doi.org/10.3389/fpls.2021.679892
  4. Desta, K. T., O. S. Hur, S. Lee, H. Yoon, M.-J. Shin, J. Yi, Y. Lee, N. Y. Ro, X. Wang, and Y.-M. Choi. 2022. Origin and seed coat color differently affect the concentrations of metabolites and antioxidant activities in soybean (Glycine max (L.) Merrill) seeds. Food Chemistry 381 : 132249. https://doi.org/10.1016/j.foodchem.2022.132249
  5. Desta, K. T., Y.-M. Choi, J. Yi, S. Lee, M.-J Shin, and X. Wang. 2023. Agro-morphological Characterization of Korean, Chinese, and Japanese Adzuki Bean (Vigna angularis (Willd .) Ohwi & Ohashi) Genotypes. Korean Journal of Crop Science 68(1) : 8-19. https://doi.org/10.7740/kjcs.2023.68.1.008
  6. Gohara, A. K., A. H. Souza, S. T. Gomes, N. E. Souza, J. V. Visentainer, and M. Matsushita. 2016. Nutritional and bioactive compounds of adzuki beans cultivars using chemometric approach. Ciencia E. Agrotecnologia 40(1) : 104-113. http://dx.doi.org/10.1590/S1413-70542016000100010
  7. Ha, T. J., J. E. Park, K. S. Lee, W. D. Seo, S. B. Song, M. H. Lee, S. Kim, J. I. Kim, E. Oh, S. B. Pae, D. Y. Kwak, and J. H. Lee. 2021. Identification of anthocyanin compositions in black seed coated Korean adzuki bean (Vigna angularis) by NMR and UPLC-Q-Orbitrap-MS/MS and screening for their antioxidant properties using different solvent systems. Food Chemistry 346 : 128882. https://doi.org/10.1016/j.foodchem.2020.128882
  8. Han, N., K. S. Woo, J. Y. Lee, S. B. Song, Y. Y. Lee, M. Kim, M. S. Kang, and H. J. Kim. 2022. Comparison of Physicochemical Characteristics, Functional Compounds, and Physiological Activities in Adzuki Bean Cultivars. Journal of the Korean Society of Food Science and Nutrition 51(5) : 428-438. https://doi.org/10.3746/jkfn.2022.51.5.428
  9. Hoeck, J. A., W. R. Fehr, P. A. Murphy, and G. A. Welke. 2000. Influence of genotype and environment on isoflavone contents of soybean. Crop Science 40(1) : 48-51. https://doi.org/10.2135/cropsci2000.40148x
  10. Hori, Y., S. Sato, and A. Hatai. 2006. Antibacterial activity of plant extracts from azuki beans (Vigna angularis) in vitro. Phytotherapy Research 20(2) : 162-164. https://doi.org/10.1002/ptr.1826
  11. Horiuchi, Y., H. Yamamoto, R. Ogura, N. Shimoda, H. Sato, and K. Kato. 2015. Genetic Analysis and Molecular Mapping of Genes Controlling Seed Coat Colour in Adzuki Bean (Vigna angularis). Euphytica 206(3) : 609-617. https://doi.org/10.1007/s10681-015-1461-9.
  12. Johnson, J. B., P. Neupane, S. P. Bhattarai, T. Trotter, and M. Naiker. 2022. Partitioning of nutritional and phytochemical constituents in nine Adzuki bean genotypes from Australia. Journal of Agriculture and Food Research 10 : 100398. https://doi.org/10.1016/j.jafr.2022.100398
  13. Kaga, A., T. Isemura, N. Tomooka, and D. A. Vaughan. 2008. The genetics of domestication of the azuki bean (Vigna angularis). Genetics 178(2) : 1013-1036. https://doi.org/10.1534/genetics.107.078451
  14. Kim, E.-H., H.-K. Song, Y.-J. Park, J.-R. Lee, M.-Y. Kim, and I.-M. Chung. 2011. Determination of Phenolic Compounds in Adzuki bean (Vigna angularis) Germplasm. Korean Journal of Crop Science 56(4) : 375-384. https://doi.org/10.7740/kjcs.2011.56.4.375
  15. Kim, M., J.-E. Park, S.-B. Song, and Y.-S. Cha. 2015. Effect of black adzuki bean (Vigna angularis) extract on proliferation and differentiation of 3T3-L1 preadipocytes into mature adipocytes. Nutrients 7 : 277-292. https://doi.org/10.3390/nu7010277
  16. Kitano-Okada, T., A. Ito, A. Koide, Y. Nakamura, K. H. Han, K. Shimada, K. Sasaki, K. Ohba, S. Sibayama, and M. Fukushima. 2012. Anti-obesity role of adzuki bean extract containing polyphenols: In vivo and in vitro effects. Journal of the Science of Food and Agriculture 92(13) : 2644-2651. https://doi.org/10.1002/jsfa.5680
  17. Kuriya, K., S. Goto, E. Kobayashi, M. Nishio, M. Nakamura, and H. Umekawa. 2023. Cholesterol-lowering activity of adzuki bean (Vigna angularis) polyphenols. Molecular Biology Reports 50(7) : 5575-5584. https://doi.org/10.1007/s11033-023-08481-7
  18. Lee, K. J., K. H. Ma, Y. H. Cho, J. R. Lee, J. W. Chung, and G. A. Lee. 2017a. Phytochemical distribution and antioxidant activities of Korean adzuki bean (Vigna angularis) landraces. Journal of Crop Science and Biotechnology 20(3) : 205-212. https://doi.org/10.1007/s12892-017-0056-0
  19. Lee, J., Y. S. Hwang, S. T. Kim, W. B. Yoon, W. Y. Han, I. K. Kang, and M. G. Choung. 2017b. Seed coat color and seed weight contribute differential responses of targeted metabolites in soybean seeds. Food Chemistry 214 : 248-258. https://doi.org/10.1016/j.foodchem.2016.07.066
  20. Lee, L. S., E. J. Choi, C. H. Kim, J. M. Sung, Y. B. Kim, J. S. Kum, and J. D. Park. 2015b. Antioxidant properties of different parts of red and black adzuki beans. Journal of the Korean Society of Food Science and Nutrition 44(8) : 1150-1156. https://doi.org/10.3746/jkfn.2015.44.8.1150
  21. Lee, S. J., J. J. Kim, H. I. Moon, J. K. Ahn, S. C. Chun, W. S. Jung, O. K. Lee, and I. M. Chung. 2008. Analysis of isoflavones and phenolic compounds in Korean soybean [Glycine max (L.) Merrill] seeds of different seed weights. Journal of Agricultural and Food Chemistry 56(8) : 2751-2758. https://doi.org/10.1021/jf073153f
  22. Lee, S. S., N. Mohd Esa, and S. P. Loh. 2015a. In vitro inhibitory activity of selected legumes against pancreatic lipase. Journal of Food Biochemistry 39(4) : 485-490. https://doi.org/10.1111/jfbc.12150
  23. Li, H, L. Zou, X. Li, D. Wu, H. Liu, H. Li, and R. Gan. 2022. Adzuki bean (Vigna angularis): chemical compositions, physicochemical properties, health benefits, and food applications. Comprehensive Review in Food Science and Food Safety 21 : 2335-62. https://doi.org/10.1111/1541-4337.12945
  24. Liu, R., and B. Xu. 2015. Inhibitory effects of phenolics and saponins from commonly consumed food legumes in China against digestive enzymes pancreatic lipase and α-Glycosidase. International Journal of Food Properties 18(10) : 2246-2255. https://doi.org/10.1080/10942912.2014.971178
  25. Liu, R., Y. Zheng, Z. Cai, and B. Xu. 2017a. Saponins and flavonoids from adzuki bean (Vigna angularis L.) ameliorate high-fat diet-induced obesity in ICR mice. Frontiers in Pharmacology 8 : 1-8. https://doi.org/10.3389/fphar.2017.00687
  26. Liu, R., Z. Cai, and B. Xu. 2017b. Characterization and quantification of flavonoids and saponins in adzuki bean (Vigna angularis L.) by HPLC-DAD-ESI-MSn analysis. Chemistry Central Journal 11(1) : 1-17. https://doi.org/10.1186/s13065-017-0317-x
  27. Luo, J., W. Cai, T. Wu, and B. Xu. 2016. Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Food Chemistry 201 : 350-360. https://doi.org/10.1016/j.foodchem.2016.01.101
  28. Martins, G. R., M. M. G. Mattos, F. M. Nascimento, F. L. Brum, R. Mohana-Borges, N. G. Figueiredo, D. F. M. Neto, G. B. Domont, F. C. S. Nogueira, F. D. A. De Paiva Campos, and A. Sant'Ana Da Silva. 2022. Phenolic Profile and Antioxidant Properties in Extracts of Developing Acai (Euterpe oleracea Mart.) Seeds. Journal of Agricultural and Food Chemistry 70(51) : 16218-16228. https://doi.org/10.1021/acs.jafc.2c07028
  29. Nagao, N., Y. Sakuma, T. Funakoshi, and T. Itani. 2023. Variation in antioxidant capacity of the seven azuki bean (Vigna angularis) varieties with different seed coat color. Plant Production Science 26(2) : 164-173. https://doi.org/10.1080/1343943X.2023.2206576
  30. Oh, S.-M., J. Jang, K. Park, Y. Kang, J.-S. Lee, S.-B. Song, T. Yun, and J. Y. Kim. 2022. Yield and Antioxidant Properties of Korean Adzuki Bean (Vigna angularis L.) Cultivars Under Different Air Temperatures and Sunshine Hours. Korean Journal of Crop Science 67(3) : 189-197. https://doi.org/10.7740/kjcs.2022.67.3.189
  31. Popoola, J. O., O. B. Ojuederie, O. S. Aworunse, A. Adelekan, A. S. Oyelakin, O. L. Oyesola, P. A. Akinduti, S. O. Dahunsi, T. T. Adegboyega, S. U. Oranusi, M. S. Ayilara, and C. A. Omonhinmin. 2023. Nutritional, functional, and bioactive properties of African underutilized legumes. Frontiers in Plant Science 14 : 1105364. https://doi.org/10.3389/fpls.2023.1105364
  32. Redden, R. J., K. E. Basford, P. M. Kroonenberg, F. M. A. Islam, R. Ellis, S. Wang, Y. Cao, X. Zong, and X. Wang. 2009. Variation in Adzuki Bean (Vigna angularis) Germplasm Grown in China. Crop Science 49(3) : 771-782. https://doi.org/10.2135/cropsci2008.03.0175.
  33. Sahasakul, Y., A. Aursalung, S.Thangsiri, P. Wongchang, P. Sangkasa-ad, A. Wongpia, A. Polpanit, W. Inthachat, P. Temviriyanukul, and U. Suttisansanee. 2022. Nutritional Compositions, Phenolic Contents, and Antioxidant Potentials of Ten Original Lineage Beans in Thailand. Foods 11(14) : 2062. https://doi.org/10.3390/foods11142062
  34. Sangsukiam, T., and K. Duangmal. 2022. Changes in bioactive compounds and health-promoting activities in adzuki bean: Effect of cooking conditions and in vitro simulated gastrointestinal digestion. Food Research International 157 : 111371. https://doi.org/10.1016/j.foodres.2022.111371
  35. Siah, S., J. A. Wood, S. Agboola, I. Konczak, and C. L. Blanchard. 2014. Effects of soaking, boiling and autoclaving on the phenolic contents and antioxidant activities of faba beans (Vicia faba l.) differing in seed coat colours. Food Chemistry 142 : 461-468. https://doi.org/10.1016/j.foodchem.2013.07.068
  36. Sung, J. S., S. B. Song, J. Y. Kim, Y. J. An, J. E. Park, M. E. Choe, and J. H. Chu. 2020. Variation in Physicochemical Characteristics and Antioxidant Activities of Small Redbean Cultivars. Korean Journal of Crop Science 65(3) : 231-240. https://doi.org/10.7740/kjcs.2020.65.3.231
  37. Szakiel, A., C. Paczkowski, and M. Henry. 2011. Influence of environmental abiotic factors on the content of saponins in plants. Phytochemistry Reviews 10(4) : 471-491. https://doi.org/10.1007/s11101-010-9177-x
  38. Tayade, R., S. Kim, P. Tripathi, Y. Choi, J. Yoon, and Y. Kim. 2022. High-throughput Root Imaging Analysis Reveals Wide. Plants 11 : 405. https://doi.org/10.3390/plants11030405
  39. Wang, M. L., A. G. Gillaspie, J. B. Morris, R. N. Pittman, J. Davis, and G. A. Pederson. 2008. Flavonoid content in different legume germplasm seeds quantified by HPLC. Plant Genetic Resources : Characterisation and Utilisation 6(1) : 62-69. https://doi.org/10.1017/S1479262108923807
  40. Wang, Y., X. Yao, H. Shen, R. Zhao, Z. Li, X. Shen, F. Wang, K. Chen, Y. Zhou, B. Li, X. Zheng, and S. Lu. 2022. Nutritional Composition, Efficacy, and Processing of Vigna angularis (Adzuki Bean) for the Human Diet: An Overview. Molecules 27(18) : 6079. https://doi.org/10.3390/molecules27186079
  41. Xu, B. J., S. H. Yuan, and S. K. C. Chang. 2007. Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. Journal of Food Science 72(2) : S167-S177. https://doi.org/10.1111/j.1750-3841.2006.00261.x
  42. Xu, B., and S. K. C. Chang. 2009. Phytochemical profiles and health-promoting effects of cool-season food legumes as influenced by thermal processing. Journal of Agricultural and Food Chemistry 57(22) : 10718-10731. https://doi.org/10.1021/jf902594m
  43. Yousif, A. M., J. Kato, and H. C. Deeth. 2007. Effect of Storage on the Biochemical Structure and Processing Quality of Adzuki Bean (Vigna angularis). Food Rev. Int. 23 : 1-33 https://doi.org/10.1080/87559120600865172
  44. Zhao, P., L. Chu, K. Wang, B. Zhao, Y. Li, K. Yang, and P. Wan. 2022. Analyses on the pigment composition of different seed coat colors in adzuki bean. Food Science and Nutrition 10(8) : 2611-2619. https://doi.org/10.1002/fsn3.2866