DOI QR코드

DOI QR Code

Fire resistance of hybrid fiber reinforced SCC: Effect of use of polyvinyl-alcohol or polypropylene with single and binary steel fiber

  • Kazim Turk (Inonu University, Engineering Faculty, Department of Civil Engineering) ;
  • Ceren Kina (Malatya Turgut Ozal University, Faculty of Engineering and Natural Sciences, Department of Civil Engineering) ;
  • Esma Balalan (Inonu University, Engineering Faculty, Department of Civil Engineering)
  • Received : 2021.10.07
  • Accepted : 2023.06.13
  • Published : 2023.07.25

Abstract

This study presents the experimental results performed to evaluate the effects of Polyvinyl-alcohol (PVA) and Polypropylene (PP) fibers on the fresh and residual mechanical properties of the hybrid fiber reinforced SCC before and after the exposure of 250℃, 500℃ and 750℃ temperatures. The compressive and splitting tensile strength, modulus of rupture (MOR), ultrasonic pulse velocity (UPV) as well as toughness and weight loss were investigated at different temperatures. PVA and PP fibers were added into SCC mixtures having only macro steel fiber and also having binary hybridization of both macro and micro steel fiber. The results showed that the use of micro steel fiber replaced by macro steel fiber improved the fresh and hardened properties compared to the use of only macro steel fiber. Moreover, it was emphasized that PVA or PP enhanced the residual flexural performance of SCC, generally, while it negatively influenced the workability, weight loss, UPV and the residual strengths with regards to the use of single steel fiber and binary steel fiber hybridization. Compared to the effect of synthetic fibers, PP had slightly more positive effect in the view of workability while PVA enhanced the residual mechanical properties more.

Keywords

Acknowledgement

In this study, Scientific Research Projects Committee of Inonu University provided the financial support in Turkiye (Project No: FYL-2017-844). Their support was gratefully acknowledged.

References

  1. Ali, M.H., Dinkha, Y.Z. and Haido, J.H. (2017), "Mechanical properties and spalling at elevated temperature of high performance concrete made with reactive and waste inert powders", Eng. Sci. Technol., Int. J., 20(2), 536-541. https://doi.org/10.1016/j.jestch.2016.12.004
  2. Aslani, F., Hamidi, F., Valizadeh, A. and Dang, A.T.N. (2020), "High-performance fibre-reinforced heavyweight self-compacting concrete: Analysis of fresh and mechanical properties", Constr. Build. Mater., 232. https://doi.org/10.1016/j.conbuildmat.2019.117230
  3. ASTM (2019), ASTM C618-19: Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM Standards.
  4. ASTM C39 / C39M-20 (2020), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.
  5. ASTM C496 / C496M-17 (2017), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens.
  6. ASTM C78 / C78M-18 (2018), Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading).
  7. ASTM International (2009), C597-09. Standard Test Method for Pulse Velocity Through Concrete, Annual Book of ASTM Standards.
  8. Bassurucu, M., Fenerli, C., Kina, C. and Akbas, S. (2022), "Effect of fiber type, shape and volume fraction on mechanical and flexural properties of concrete", J. Sustain. Constr. Mater. Technol., 7(3), 158-171. https://doi.org/10.47481/jscmt.1137088
  9. Behfarnia, K. and Rostami, M. (2017), "Mechanical properties and durability of fiber reinforced alkali activated slag concrete", J. Mater. Civil Eng., 29(12), 04017231. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002073
  10. Bhat, P.S., Chang, V. and Li, M. (2014), "Effect of elevated temperature on strain-hardening engineered cementitious composites", Constr. Build. Mater., 69, 370-380. https://doi.org/10.1016/j.conbuildmat.2014.07.052
  11. Chan, Y.N., Peng, G.F. and Anson, M. (1999), "Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures", Cement Concrete Compos., 21(1), 23-27. https://doi.org/10.1016/S0958-9465(98)00034-1
  12. Deshpande, A.A., Kumar, D. and Ranade, R. (2019), "Influence of high temperatures on the residual mechanical properties of a hybrid fiber-reinforced strain-hardening cementitious composite", Constr. Build. Mater., 208, 283-295. https://doi.org/10.1016/j.conbuildmat.2019.02.129
  13. Ding, Y., Liu, S., Zhang, Y. and Thomas, A. (2008), "The investigation on the workability of fibre cocktail reinforced self-compacting high performance concrete", Constr. Build. Mater., 22(7), 1462-1470. https://doi.org/10.1016/j.conbuildmat.2007.03.034
  14. Ding, Y., Wang, Y., Zhang, Y. and Paulini, P. (2009), "Investigation of the stress and strain state of clay pipes under fire condition", Ceramics Int., 35(1), 63-67. https://doi.org/10.1016/j.ceramint.2007.09.112
  15. Ding, Y., You, Z. and Jalali, S. (2010), "Hybrid fiber influence on strength and toughness of RC beams", Compos. Struct., 92(9), 2083-2089. https://doi.org/10.1016/j.compstruct.2009.10.016
  16. Ding, Y., Azevedo, C., Aguiar, J.B. and Jalali, S. (2012), "Study on residual behaviour and flexural toughness of fibre cocktail reinforced self compacting high performance concrete after exposure to high temperature", Constr. Build. Mater., 26(1), 21-31. https://doi.org/10.1016/j.conbuildmat.2011.04.058
  17. EFNARC (2002), Specification and Guidelines for Self-Compacting Concrete. Report from EFNARC.
  18. Eidan, J., Rasoolan, I., Rezaeian, A. and Poorveis, D. (2019), "Residual mechanical properties of polypropylene fiber-reinforced concrete after heating", Constr. Build. Mater., 198, 195-206. https://doi.org/10.1016/j.conbuildmat.2018.11.209
  19. Gao, D., Yan, D. and Li, X. (2012), "Splitting strength of GGBFS concrete incorporating with steel fiber and polypropylene fiber after exposure to elevated temperatures", Fire Safety J., 67-73. https://doi.org/10.1016/j.firesaf.2012.07.009
  20. Guo, Z., Zhuang, C., Li, Z. and Chen, Y. (2021), "Mechanical properties of carbon fiber reinforced concrete (CFRC) after exposure to high temperatures", Compos. Struct., 256. https://doi.org/10.1016/j.compstruct.2020.113072
  21. Haddadou, N., Chaid, R., Ghernouti, Y. and Adjou, N. (2014), "The effect of hybrid steel fiber on the properties of fresh and hardened self-compacting concrete", J. Build. Mater. Struct., 1, 65-76. https://doi.org/10.34118/jbms.v1i2.10
  22. Haido, J.H., Tayeh, B.A., Majeed, S.S. and Karpuzcu, M. (2020), "Effect of high temperature on the mechanical properties of basalt fibre self-compacting concrete as an overlay material", Constr. Build. Mater., 268, 121725. https://doi.org/10.1016/j.conbuildmat.2020.121725
  23. Hassiba, B., Mekki, M. and Fraid, R. (2018), "The relationship between the compressive strength and ultrasonic pulse velocity concrete with fibers exposed to high temperatures", Int. J. of Energet., 3(1), 31.
  24. Heinz, D., Dehn, F. and Urbonas, L. (2004), "Fire Resistance of Ultra High Performance Concrete (UHPC) - Testing of Laboratory Samples and Columns under Load", In: International Symposium on Ultra High Performance Concrete.
  25. Le Hoang, A. and Fehling, E. (2017), "Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete", Constr. Build. Mater., 153, 790-806. https://doi.org/10.1016/j.conbuildmat.2017.07.130
  26. Janotka, I. and Mojumdar, S.C. (2005), "Thermal analysis at the evaluation of concrete damage by high temperatures", J. Thermal Anal. Calorim., 81(1), 197-203. https://doi.org/10.1007/s10973-005-0767-6
  27. Khaliq, W. and Kodur, V. (2011), "Thermal and mechanical properties of fiber reinforced high-performance self-consolidating concrete at elevated temperatures", Cement Concrete Res., 41(11), 1112-1122. https://doi.org/10.1016/j.cemconres.2011.06.012
  28. Khan, M., Cao, M., Chaopeng, X. and Ali, M. (2021), "Experimental and analytical study of hybrid fiber reinforced concrete prepared with basalt fiber under high temperature", Fire and Materials, 46(1), 205-226. https://doi.org/10.1002/fam.2968
  29. Khotbehsara, M.M., Miyandehi, B.M., Naseri, F., Ozbakkaloglu, T., Jafari, F. and Mohseni, E. (2018), "Effect of SnO2, ZrO2, and CaCO3 nanoparticles on water transport and durability properties of self-compacting mortar containing fly ash: Experimental observations and ANFIS predictions", Constr. Build. Mater., 158, 823-834. https://doi.org/10.1016/j.conbuildmat.2017.10.067
  30. Kodur, V.K.R. (2004), "Spalling in high strength concrete exposed to fire - Concerns, causes, critical parameters and cures", In: Structures Congress 2000: Advanced Technology in Structural Engineering.
  31. Kodur, V. (2014), "Properties of concrete at elevated temperatures", In: ISRN Civil Engineering.
  32. Koushkbaghi, M., Kazemi, M.J., Mosavi, H. and Mohseni, E. (2019), "Acid resistance and durability properties of steel fiber-reinforced concrete incorporating rice husk ash and recycled aggregate", Constr. Build. Mater., 202, 266-275. https://doi.org/10.1016/j.conbuildmat.2018.12.224
  33. Kurtz, S. and Balaguru, P. (2000), "Postcrack creep of polymeric fiber-reinforced concrete in flexure", Cement Concrete Res., 30(2), 183-190. https://doi.org/10.1016/S0008-8846(99)00228-8
  34. Li, V.C., Wang, S. and Wu, C. (2001), "Tensile strain-hardening behavior or polyvinyl alcohol engineered cementitious composite (PVA-ECC)", ACI Mater. J., 98(6), 483-492. https://doi.org/10.14359/10851
  35. Li, H., Wang, Y., Xie, H. and Zheng, W. (2012), "Microstructure analysis of reactive powder concrete after exposed to high temperature", Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 40(5), 71-75.
  36. Li, X., Bao, Y., Wu, L., Yan, Q., Ma, H., Chen, G. and Zhang, H. (2017), "Thermal and mechanical properties of high-performance fiber-reinforced cementitious composites after exposure to high temperatures", Constr. Build. Mater., 157, 829-838. https://doi.org/10.1016/j.conbuildmat.2017.09.125
  37. Liang, X., Wu, C., Su, Y., Chen, Z. and Li, Z. (2018), "Development of ultra-high performance concrete with high fire resistance", Constr. Build. Mater., 179, 400-412. https://doi.org/10.1016/j.conbuildmat.2018.05.241
  38. Liu, Y., Zhang, Z., Shi, C., Zhu, D., Li, N. and Deng, Y. (2020), "Development of ultra-high performance geopolymer concrete (UHPGC): Influence of steel fiber on mechanical properties", Cement Concrete Compos., 112. https://doi.org/10.1016/j.cemconcomp.2020.103670
  39. Luo, X., Sun, W. and Chan, S.Y.N. (2000), "Effect of heating and cooling regimes on residual strength and microstructure of normal strength and high-performance concrete", Cement Concrete Res., 30(3), 379-383. https://doi.org/10.1016/S0008-8846(99)00264-1
  40. Mahapatra, C.K. and Barai, S.V. (2019), "Temperature impact on residual properties of self-compacting based hybrid fiber reinforced concrete with fly ash and colloidal nano silica", Constr. Build. Mater., 198, 120-132. https://doi.org/10.1016/j.conbuildmat.2018.11.155
  41. Majeed, S.S., Haido, J.H., Atrushi, D.S., Al-Kamaki, Y., Dinkha, Y.Z., Saadullah, S.T. and Tayeh, B.A. (2021), "Properties of self-compacted concrete incorporating basalt fibers: Experimental study and Gene Expression Programming (GEP) analysis", Comput. Concrete, Int. J., 28(5), 451-463. https://doi.org/10.12989/cac.2021.28.5.451
  42. Mohamedbhai, G.T.G. (1986), "Effect of exposure time and rates of heating and cooling on residual strength of heated concrete", Magaz. Concrete Res., 38(136), 151-158. https://doi.org/10.1680/macr.1986.38.136.151
  43. Moradllo, M.K., Qiao, C., Isgor, B., Reese, S. and Weiss, W.J. (2018), "Relating formation factor of concrete to water absorption", ACI Mater. J., 115(6), 887-898. https://doi.org/10.14359/51706844
  44. Netinger, I., Varevac, D., Bjegovic, D. and Moric, D. (2013), "Effect of high temperature on properties of steel slag aggregate concrete", Fire Safety J., 59, 1-7. https://doi.org/10.1016/j.firesaf.2013.03.008
  45. Park, J.J., Yoo, D.Y., Kim, S. and Kim, S.W. (2019), "Benefits of synthetic fibers on the residual mechanical performance of UHPFRC after exposure to ISO standard fire", Cement Concrete Compos., 104. https://doi.org/10.1016/j.cemconcomp.2019.103401
  46. Peng, G.F., Bian, S.H., Guo, Z.Q., Zhao, J., Peng, X.L. and Jiang, Y.C. (2008), "Effect of thermal shock due to rapid cooling on residual mechanical properties of fiber concrete exposed to high temperatures", Constr. Build. Mater., 22(5), 948-955. https://doi.org/10.1016/j.conbuildmat.2006.12.002
  47. Pliya, P., Beaucour, A.L. and Noumowe, A. (2011), "Contribution of cocktail of polypropylene and steel fibres in improving the behaviour of high strength concrete subjected to high temperature", Constr. Build. Mater., 25(4), 1926-1934. https://doi.org/10.1016/j.conbuildmat.2010.11.064
  48. Rashad, A.M., Bai, Y., Basheer, P.A.M., Collier, N.C. and Milestone, N.B. (2012), "Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature", Cement Concrete Res., 42(2), 333-343. https://doi.org/10.1016/j.cemconres.2011.10.007
  49. Ruano, G., Isla, F., Luccioni, B., Zerbino, R. and Giaccio, G. (2018), "Steel fibers pull-out after exposure to high temperatures and its contribution to the residual mechanical behavior of high strength concrete", Constr. Build. Mater., 163, 571-585. https://doi.org/10.1016/j.conbuildmat.2017.12.129
  50. Sadrmomtazi, A. and Tahmouresi, B. (2017), "Effect of fiber on mechanical properties and toughness of self-compacting concrete exposed to high temperatures", AUT J. Civil Eng., 1(2), 153-166.
  51. Sadrmomtazi, A., Tahmouresi, B. and Saradar, A. (2018), "Effects of silica fume on mechanical strength and microstructure of basalt fiber reinforced cementitious composites (BFRCC)", Constr. Build. Mater., 162, 321-333. https://doi.org/10.1016/j.conbuildmat.2017.11.159
  52. Sadrmomtazi, A., Gashti, S.H. and Tahmouresi, B. (2020), "Residual strength and microstructure of fiber reinforced self-compacting concrete exposed to high temperatures", Constr. Build. Mater., 230. https://doi.org/10.1016/j.conbuildmat.2019.116969
  53. Sahmaran, M., Lachemi, M. and Li, V.C. (2010), "Assessing mechanical properties and microstructure of fire-damaged engineered cementitious composites", ACI Mater. J., 107(3), 297-304.
  54. Satoh, K., Yamaguchi, M. and Ogura, I. (1979), "Thermal decomposition products of guaiazulene", Yakugaku Zasshi, 99(9), 958-960. https://doi.org/10.1248/yakushi1947.99.9_958
  55. Shafiei Dastgerdi, A., Peterman, R.J., Riding, K. and Beck, B.T. (2019), "Effect of concrete mixture components, proportioning, and compressive strength on fracture parameters", Constr. Build. Mater., 206, 179-192. https://doi.org/10.1016/j.conbuildmat.2019.02.025
  56. Sun, Z. and Xu, Q. (2009), "Microscopic, physical and mechanical analysis of polypropylene fiber reinforced concrete", Mater. Sci. Eng. A, 527(1-2), 198-204. https://doi.org/10.1016/j.msea.2009.07.056
  57. Topcu, I.B. and Karakurt, C. (2008), "Properties of reinforced concrete steel rebars exposed to high temperatures", Adv. Mater. Sci. Eng., 2008. https://doi.org/10.1155/2008/814137
  58. Tsuchiya, Y. and Sumi, K. (1969), "Thermal decomposition products of polypropylene", J. Polym. Sci. Part A-1: Polym. Chem., 7(7), 1599-1607. https://doi.org/10.1002/pol.1969.150070704
  59. Turgut, P., Turk, K. and Bakirci, H. (2012), "Segregation control of SCC with a modified L-box apparatus", Magaz. Concrete Res., 64(8), 707-716. https://doi.org/10.1680/macr.11.00144
  60. Turk, K. (2012), "Viscosity and hardened properties of self-compacting mortars with binary and ternary cementitious blends of fly ash and silica fume", Constr. Build. Mater., 37, 326-334. https://doi.org/10.1016/j.conbuildmat.2012.07.081
  61. Turk, K. and Karatas, M. (2011), "Abrasion resistance and mechanical properties of self-compacting concrete with different dosages of fly ash/silica fume", Indian J. Eng. Mater. Sci., 18(1), 49-60.
  62. Turk, K., Kina, C. and Oztekin, E. (2020), "Effect of macro and micro fiber volume on the flexural performance of hybrid fiber reinforced SCC", Adv. Concrete Constr., Int. J., 10(3), 257-269. https://doi.org/10.12989/acc.2020.10.3.257
  63. Turk, K., Bassurucu, M. and Bitkin, R.E. (2021), "Workability, strength and flexural toughness properties of hybrid steel fiber reinforced SCC with high-volume fiber", Constr. Build. Mater., 266. https://doi.org/10.1016/j.conbuildmat.2020.120944
  64. Turk, K., Oztekin, E. and Kina, C. (2022), "Self-compacting concrete with blended short and long fibres: experimental investigation on the role of fibre blend proportion", Eur. J. Environ. Civil Eng., 26(3), 905-918. https://doi.org/10.1080/19648189.2019.1686069
  65. Varona, F.B., Baeza, F.J., Bru, D. and Ivorra, S. (2018), "Influence of high temperature on the mechanical properties of hybrid fibre reinforced normal and high strength concrete", Constr. Build. Mater., 159, 73-82. https://doi.org/10.1016/j.conbuildmat.2017.10.129
  66. Wang, G., Zhang, C., Zhang, B., Li, Q. and Shui, Z. (2015), "Study on the high-temperature behavior and rehydration characteristics of hardened cement paste", Fire Mater., 39(8), 741-750. https://doi.org/10.1002/fam.2269
  67. Xargay, H., Folino, P., Sambataro, L. and Etse, G. (2018), "Temperature effects on failure behavior of self-compacting high strength plain and fiber reinforced concrete", Constr. Build. Mater., 165, 723-734. https://doi.org/10.1016/j.conbuildmat.2017.12.137
  68. Xiao, J. and Falkner, H. (2006), "On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures", Fire Safety J., 41(2), 115-121. https://doi.org/10.1016/j.firesaf.2005.11.004
  69. Xie, T. and Visintin, P. (2018), "A unified approach for mix design of concrete containing supplementary cementitious materials based on reactivity moduli", J. Cleaner Prod., 203, 68-82. https://doi.org/10.1016/j.jclepro.2018.08.254
  70. Xie, T., Fang, C., Mohamad Ali, M.S. and Visintin, P. (2018), "Characterizations of autogenous and drying shrinkage of ultra-high performance concrete (UHPC): An experimental study", Cement Concrete Compos., 91, 156-173. https://doi.org/10.1016/j.cemconcomp.2018.05.009
  71. Xu, Y., Wong, Y.L., Poon, C.S. and Anson, M. (2001), "Impact of high temperature on PFA concrete", Cement Concrete Res., 31(7), 1065-1073. https://doi.org/10.1016/S0008-8846(01)00513-0
  72. Xu, B., Toutanji, H.A., Lavin, T. and Gilbert, J.A. (2011), "Characterization of poly(vinyl alcohol) fiber reinforced organic aggregate cementitious materials", In: Key Engineering Materials, Vol. 466, pp. 73-83. https://doi.org/10.4028/www.scientific.net/KEM.466.73
  73. Yang, H., Lin, Y., Hsiao, C. and Liu, J.Y. (2009), "Evaluating residual compressive strength of concrete at elevated temperatures using ultrasonic pulse velocity", Fire Safety J., 44(1), 121-130. https://doi.org/10.1016/j.firesaf.2008.05.003
  74. Yuksel, S., Siddique, R. and Ozkan, O. (2011), "Influence of high temperature on the properties of concretes made with industrial by-products as fine aggregate replacement", Constr. Build. Mater., 25(2), 967-972. https://doi.org/10.1016/j.conbuildmat.2010.06.085
  75. Yun, H.D., Yang, I.S., Kim, S.W., Jeon, E., Choi, C.S. and Fukuyama, H. (2007), "Mechanical properties of high-performance hybrid-fibre-reinforced cementitious composites (HPHFRCCs)", Magaz. Concrete Res., 59(4), 257-271. https://doi.org/10.1680/macr.2007.59.4.257
  76. Zhang, Q., Ye, G. and Koenders, E. (2013), "Investigation of the structure of heated Portland cement paste by using various techniques", Constr. Build. Mater., 38, 1040-1050. https://doi.org/10.1016/j.conbuildmat.2012.09.071
  77. Zheng, W., Li, H. and Wang, Y. (2012), "Compressive stress-strain relationship of steel fiber-reinforced reactive powder concrete after exposure to elevated temperatures", Constr. Build. Mater., 35, 931-940. https://doi.org/10.1016/j.conbuildmat.2012.05.031
  78. Zhou, X. and Li, Z. (2005), "Characterization of rheology of fresh fiber reinforced cementitious composites through ram extrusion", Mater. Struct., 38(1), 17-24. https://doi.org/10.1007/BF02480570