DOI QR코드

DOI QR Code

Antioxidant and anti-inflammatory effects and mechanism of Abeliophyllum distichum leaf extract in RAW264.7 macrophages

RAW264.7 대식세포에서 미선나무 잎 추출물의 항산화, 항염증 효능 및 기전연구

  • Juhee Yoo (Department of Food and Nutrition, Chungnam National University) ;
  • Kyung-Ah Kim (Department of Food and Nutrition, Chungnam National University)
  • Received : 2023.06.26
  • Accepted : 2023.09.05
  • Published : 2023.10.31

Abstract

Purpose: Abeliophyllum distichum (A.distichum) is a plant native to Korea. In this study, we investigated the mechanism of antioxidant and anti-inflammatory effects of the leaf extract of A.distichum. Methods: The antioxidant capacity of the A.distichum leaf extract was determined based on the total polyphenol content, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay, and the ferric reducing antioxidant power (FRAP) assay. The anti-inflammatory effects of the A.distichum leaf extract were evaluated by measuring the production of nitric oxide (NO) and the expression levels of proinflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 using the enzyme-linked immunosorbent assay (ELISA) and reverse transcription quantitative real-time PCR (RT-qPCR). In addition, the expression of heme oxygenase-1 (HO-1), nuclear transcription factor-erythroid 2 related factor (Nrf2), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2), as well as the activation of nuclear factorkappa B (NF-ĸB) were examined using the western blot analysis. Results: The total polyphenol content of the A.distichum leaf extract was 329.89 ± 30.17 gallic acid equivalents mg/g and the DPPH and ABTS scavenging activities were 55% and 70%, respectively. Additionally, the FRAP value of the extract was 743.68 ± 116.59 mg/mL. After 12-hour treatment with the A.distichum leaf extract, there was a tendency for the Nrf2 expression to increase, and the expression of HO-1 was significantly elevated in the RAW264.7 cells. The A.distichum leaf extract treatment resulted in decreased levels of NO, TNF-α, IL-6, and IL-1β, as well as reduced expression of iNOS and COX-2, along with inhibition of NF-κB activation in lipopolysaccharide-stimulated RAW264.7 cells. Conclusion: These results suggest that the A.distichum leaf extract exerts antioxidative and anti-inflammatory effects by upregulating the expression of HO-1 and downregulating NF-κB activation.

본 연구에서는 잠재적인 기능성 소재로의 개발 가능성을 검증하기 위하여 미선나무 잎 추출물의 항산화능과 항염증 효능을 확인하였다. 시료의 총 폴리페놀함량, DPPH 및 ABTS 라디칼 소거능, FRAP value를 측정하여 미선나무 잎 추출물의 항산화 활성을 확인하였으며 또한 RAW264.7 세포에 미선나무 잎 추출물 처리 후 HO-1의 발현이 증가하는 것을 통해 미선나무 잎 추출물의 항산화 기전을 확인하였다. 한편, LPS로 유도된 염증 상태의 RAW264.7 세포에서 미선나무 잎 추출물은 NF-κB 활성 억제를 통한 NO 생성 억제, iNOS, COX-2 발현 억제 및 염증성 사이토카인의 발현과 생성을 억제하는 것을 확인하였다. 이러한 본 연구 결과는 향후 미선나무 잎 추출물의 기능성 소재로의 개발을 위한 기초자료 마련에 그 의의가 있다.

Keywords

References

  1. Kim TH, Ko SC, Oh GW, Park HH, Lee DS, Yim MJ, et al. Studies on bioactive substances and antioxidant activities of marine algae from Jeju Island. J Mar Biosci Biotechnol 2016; 8(1): 30-38. https://doi.org/10.15433/ksmb.2016.8.1.030
  2. Cho SH, Choi YJ, Rho CW, Choi CY, Kim DS, Cho SH. Reactive oxygen species and cytotoxicity of bamboo (Phyllostachys pubescens) sap. Korean J Food Preserv 2008; 15(1): 105-110.
  3. Shin YO, Lee JB, Kim JK. The effect of different oxygen content and vitamin C & E supplementation during underwater exercise on blood reactive oxygen radical and antioxidant capacity. Korean J Exerc Nutr 2010; 14(3): 137-143.
  4. Jang SS, Park MH, Kim M. Analysis of the effective components and antioxidant activity of Korean black currant (Ribes nigrum L.) extracts. J East Asian Soc Diet Life 2021; 31(2): 114-122. https://doi.org/10.17495/easdl.2021.4.31.2.114
  5. Yu Y, Fan J, Hui Y, Rouzer CA, Marnett LJ, Klein-Szanto AJ, et al. Targeted cyclooxygenase gene (ptgs) exchange reveals discriminant isoform functionality. J Biol Chem 2007; 282(2): 1498-1506. https://doi.org/10.1074/jbc.M609930200
  6. Jeon SH, Oh SL, Kim SJ, Jeon BH, Sung JY, Kim YM. Anti-oxidative effect of chungsimyeonja-um (CSYJE) via Nrf2/HO-1 pathway activity in lipopolysaccharide (LPS) induced RAW 264.7 macrophages. J Soc Cosmet Sci Korea 2020; 46(3): 253-263.
  7. Jeong HR, Kim Y, Ham H, Choi Y, Lee J. Anti-inflammatory activity of Salvia plebeia R. Br. leaf through hemeoxygnase-1 induction in LPS-stimulated RAW 264.7 macrophages. J Korean Soc Food Sci Nutr 2012; 41(7): 888-894. https://doi.org/10.3746/jkfn.2012.41.7.888
  8. Kaplanski G, Marin V, Montero-Julian F, Mantovani A, Farnarier C. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol 2003; 24(1): 25-29. https://doi.org/10.1016/S1471-4906(02)00013-3
  9. Doyle SL, O'Neill LA. Toll-like receptors: from the discovery of NFκB to new insights into transcriptional regulations in innate immunity. Biochem Pharmacol 2006; 72(9): 1102-1113. https://doi.org/10.1016/j.bcp.2006.07.010
  10. Lee KM, Kang BS, Lee HL, Son SJ, Hwang SH, Kim DS, et al. Spinal NF-kB activation induces COX-2 upregulation and contributes to inflammatory pain hypersensitivity. Eur J Neurosci 2004; 19(12): 3375-3381. https://doi.org/10.1111/j.0953-816X.2004.03441.x
  11. Jeong JB, Hong SC, Jeong HJ, Koo JS. Anti-inflammatory effects of ethyl acetate fraction from Cnidium officinale Makino on LPS-stimulated RAW 264.7 and THP-1 cells. Korean J Plant Resour 2012; 25(3): 299-307. https://doi.org/10.7732/kjpr.2012.25.3.299
  12. Yoo TK, Jeong WT, Kim JG, Ji HS, Ahn MA, Chung JW, et al. UPLC-ESI-Q-TOF-MS-based metabolite profiling, antioxidant and anti-inflammatory properties of different organ extracts of Abeliophyllum distichum. Antioxidants (Basel) 2021; 10(1): 70.
  13. Lee YS, Choi JB, Joo EY, Kim NW. Antioxidative activities and tyrosinase inhibition of water extracts from Ailanthus altissima. J Korean Soc Food Sci Nutr 2007; 36(9): 1113-1119. https://doi.org/10.3746/jkfn.2007.36.9.1113
  14. Choi JH, Seo EJ, Sung J, Choi KM, Kim H, Kim JS, et al. Polyphenolic compounds, antioxidant and antiinflammatory effects of Abeliophyllum distichum Nakai extract. J Appl Bot Food Qual 2017; 90: 266-273.
  15. Lee JW, Kang YJ. Anti-inflammatory effects of Abeliophyllum distichum flower extract and associated MAPKs and NF-κB pathway in raw264. 7 cells. Korean J Plant Resour 2018; 31(3): 202-210.
  16. Kang U, Chang CS, Kim YS. Genetic structure and conservation considerations of rare endemic Abeliophyllum distichum Nakai (Oleaceae) in Korea. J Plant Res 2000; 113(2): 127-138. https://doi.org/10.1007/PL00013923
  17. Kim EY, Kim JH, Kim M, Park JH, Sohn Y, Jung HS. Abeliophyllum distichum Nakai alleviates postmenopausal osteoporosis in ovariectomized rats and prevents RANKL-induced osteoclastogenesis in vitro. J Ethnopharmacol 2020; 257: 112828.
  18. Jang TW, Choi JS, Park JH. Protective and inhibitory effects of acteoside from Abeliophyllum distichum Nakai against oxidative DNA damage. Mol Med Rep 2020; 22(3): 2076-2084. https://doi.org/10.3892/mmr.2020.11258
  19. Eom J, Thomas SS, Sung NY, Kim DS, Cha YS, Kim KA. Abeliophyllum distichum ameliorates high-fat dietinduced obesity in C57BL/6J mice by upregulating the AMPK pathway. Nutrients 2020; 12(11): 3320.
  20. Park GH, Park JH, Eo HJ, Song HM, Woo SH, Kim MK, et al. The induction of activating transcription factor 3 (ATF3) contributes to anti-cancer activity of Abeliophyllum distichum Nakai in human colorectal cancer cells. BMC Complement Altern Med 2014; 14(1): 487.
  21. Oh H, Kang DG, Kwon TO, Jang KK, Chai KY, Yun YG, et al. Four glycosides from the leaves of Abeliophyllum distichum with inhibitory effects on angiotensin converting enzyme. Phytother Res 2003; 17(7): 811-813. https://doi.org/10.1002/ptr.1199
  22. Yoo TK, Kim JS, Hyun TK. Polyphenolic composition and anti-melanoma activity of white forsythia (Abeliophyllum distichum Nakai) organ extracts. Plants (Basel) 2020; 9(6): 757.
  23. Folin O, Denis W. On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 1912; 12(2): 239-243. https://doi.org/10.1016/S0021-9258(18)88697-5
  24. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958; 181(4617): 1199-1200. https://doi.org/10.1038/1811199a0
  25. Nicoletta P. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Methods Enzymol 1999; 299: 379-389. https://doi.org/10.1016/S0076-6879(99)99037-7
  26. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 1996; 239(1): 70-76. https://doi.org/10.1006/abio.1996.0292
  27. Olinski R, Siomek A, Rozalski R, Gackowski D, Foksinski M, Guz J, et al. Oxidative damage to DNA and antioxidant status in aging and age-related diseases. Acta Biochim Pol 2007; 54(1): 11-26. https://doi.org/10.18388/abp.2007_3265
  28. Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 2009; 53(2): 75-100. https://doi.org/10.1007/s12013-009-9043-x
  29. Park HJ, Kang S, Lee JY, Cho YJ. Antioxidant activities of extracts from medicinal plants. Korean J Food Preserv 2012; 19(5): 744-750. https://doi.org/10.11002/kjfp.2012.19.5.744
  30. Kim YS, Lee SJ, Hwang JW, Kim EH, Park PJ, Jeong JH. Antioxidant activities of extracts from Ligustrum ovalifolium H. leaves. J Korean Soc Food Sci Nutr 2011; 40(12): 1642-1647. https://doi.org/10.3746/jkfn.2011.40.12.1642
  31. Roach JP, Moore EE, Partrick DA, Damle SS, Silliman CC, McIntyre RC Jr, et al. Heme oxygenase-1 induction in macrophages by a hemoglobin-based oxygen carrier reduces endotoxin-stimulated cytokine secretion. Shock 2009; 31(3): 251-257. https://doi.org/10.1097/SHK.0b013e3181834115
  32. Kaspar JW, Niture SK, Jaiswal AK. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 2009; 47(9): 1304-1309. https://doi.org/10.1016/j.freeradbiomed.2009.07.035
  33. Xu X, Li H, Hou X, Li D, He S, Wan C, et al. Punicalagin induces Nrf2/HO-1 expression via upregulation of PI3K/AKT pathway and inhibits LPS-induced oxidative stress in RAW264.7 macrophages. Mediators Inflamm 2015; 2015: 380218.
  34. Balogun E, Hoque M, Gong P, Killeen E, Green CJ, Foresti R, et al. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 2003; 371(Pt 3): 887-895. https://doi.org/10.1042/bj20021619
  35. Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, et al. The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann N Y Acad Sci 2008; 1147(1): 61-69. https://doi.org/10.1196/annals.1427.036
  36. Lee MS, Kim KA. NF-κB pathway in metabolic/endocrine diseases. J Korean Endocr Soc 2006; 21(5): 352-363. https://doi.org/10.3803/jkes.2006.21.5.352
  37. Park JH, Lee SR. Anti-inflammatory activities of Scolopendra subspinipes mutilans in RAW 264.7 cells. J Nutr Health 2018; 51(4): 323-329.
  38. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Invest 2001; 107(2): 135-142. https://doi.org/10.1172/JCI11914
  39. Kim SH, Kang MY, Nam SH. Modulatory effects of 21 kinds of medicinal herbs including Herba Pogostemi (Agastache rugosa) on nitric oxide production in macrophage cell line RAW 264.7 cells. J Appl Biol Chem 2005; 48(4): 411-417.
  40. Jacoby RF, Seibert K, Cole CE, Kelloff G, Lubet RA. The cyclooxygenase-2 inhibitor celecoxib is a potent preventive and therapeutic agent in the min mouse model of adenomatous polyposis. Cancer Res 2000; 60(18): 5040-5044.