DOI QR코드

DOI QR Code

Current Studies on Bakanae Disease in Rice: Host Range, Molecular Identification, and Disease Management

  • Yu Na An (Dongbu Branch Office of Korea Seed & Variety Service) ;
  • Chandrasekaran Murugesan (Department of Food Science and Biotechnology, Sejong University) ;
  • Hyowon Choi (Crop Protection Division, National Institute of Agricultural Sciences) ;
  • Ki Deok Kim (Division Biotechnology, College of Life Science, Korea University) ;
  • Se-Chul Chun (Department of Environmental and Health Sciences, Konkuk University)
  • 투고 : 2023.04.11
  • 심사 : 2023.06.19
  • 발행 : 2023.08.31

초록

The seed borne disease such as bakanae is difficult to control. Crop yield loss caused by bakanae depending on the regions and varieties grown, ranging from 3.0% to 95.4%. Bakanae is an important disease of rice worldwide and the pathogen was identified as Fusarium fujikuroi Nirenberg (teleomorph: Gibberella fujikuroi Sawada). Currently, four Fusaria (F. fujikuroi, F. proliferatum, F. verticillioides and F. andiyazi) belonging to F. fujikuroi species complex are generally known as the pathogens of bakanae. The infection occurs through both seed and soil-borne transmission. When infection occurs during the heading stage, rice seeds become contaminated. Molecular detection of pathogens of bakanae is important because identification based on morphological and biological characters could lead to incorrect species designation and time-consuming. Seed disinfection has been studied for a long time in Korea for the management of the bakanae disease of rice. As seed disinfectants have been studied to control bakanae, resistance studies to chemicals have been also conducted. Presently biological control and resistant varieties are not widely used. The detection of this pathogen is critical for seed certification and for preventing field infections. In South Korea, bakanae is designated as a regulated pathogen. To provide highly qualified rice seeds to farms, Korea Seed & Variety Service (KSVS) has been producing and distributing certified rice seeds for producing healthy rice in fields. Therefore, the objective of the study is to summarize the recent progress in molecular identification, fungicide resistance, and the management strategy of bakanae.

키워드

과제정보

This study was supported by Konkuk Research Fund in 2022.

참고문헌

  1. Khush GS. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol. 2005;59(1):1-6. doi: 10.1007/s11103-005-2159-5. 
  2. Bashyal BM. Etiology of an emerging disease: Bakanae of rice. Indian Phytopathology. 2018;71(4):485-494. doi: 10.1007/s42360-018-0091-2. 
  3. Takatsuji H. Development of disease-resistant rice using regulatory components of induced disease resistance. Front Plant Sci. 2014;5:630. doi: 10.3389/fpls.2014.00630. 
  4. Saha S, Garg R, Biswas A, et al. Bacterial diseases of rice: an overview. J Pure Appl Microbiol. 2015;9(1):725-736. 
  5. George MLC, Bustamam M, Cruz WT, et al. Movement of Xanthomonas oryzae pv. oryzae in southeast Asia detected using PCR-based DNA finger-printing. Phytopathol. 1997;87(3):302-309. doi: 10.1094/PHYTO.1997.87.3.302. 
  6. Amoah BK, Rezanoor HN, Nicholson P, et al. Variation in the Fusarium section Liseola: pathogenicity and genetic studies of Fusarium moniliforme sheldon from different hosts in Ghana. Plant Pathol. 1995;44(3):563-572. doi: 10.1111/j.1365-3059.1995.tb01678.x. 
  7. Desjardins AE, Manandhar HK, Plattner RD, et al. Fusarium species from nepalese rice and production of mycotoxins and gibberellic acid by selected species. Appl Environ Microbiol. 2000;66(3):1020-1025. doi: 10.1128/AEM.66.3.1020-1025.2000. 
  8. Wulff ED, Sorensen JL, Lubeck M, et al. Fusarium spp. associated with rice bakanae: ecology, genetic diversity, pathogenicity and toxigenicity. Environ Microbiol. 2010;12(3):649-657. doi: 10.1111/j.1462-2920.2009.02105.x. 
  9. Gupta AK, Solanki IS, Bashyal BM, et al. Bakanae of rice-an emerging disease in Asia. J Anim Plant Sci. 2015;25:1499-1514. 
  10. Kim SH. Degradation of prochloraz by rice bakanae disease pathogen Fusarium fujikuroi with differing sensitivity: a possible explanation for resistance mechanism. J Korean Soc Appl Biol Chem. 2010;53(4):433-439. doi: 10.3839/jksabc.2010.067. 
  11. Choi HW, Lee YH, Hong SK, et al. Baseline sensitivity and monitoring for the resistance to benomyl of Fusarium species causing bakanae in Korea. The Korean J Mycol. 2015a;43:260-266.  https://doi.org/10.4489/KJM.2015.43.4.260
  12. Choi HW, Lee YH, Hong SK, et al. Monitoring for the resistance to prochloraz of Fusarium species causing bakanae in Korea. Korean J Mycol. 2015b;43:112-117.  https://doi.org/10.4489/KJM.2015.43.4.260
  13. Hori S. Some observations on bakanae disease of the rice plant. Memb Agric Res Sta. 1898;12:110-119. 
  14. Ito S, Kimura J. Studies on the bakanae disease of the rice plant. Rep Hokkaido Agric Exp Sta. 1931;27:1-95. 
  15. Wollenweber HW, Reinking OA. Dien fusarien, ihre beschreibung, schadwirkung und kekampfung. Berlin: Paul Parey; 1935. pp. 355. 
  16. Seifert KA, Aoki T, Baayen RP, et al. The name Fusarium moniliforme should no longer be used. Mycol Res. 2003;107(6):643-644. doi: 10.1017/S095375620323820X. 
  17. Nirenberg HI. Untersuchungen uber die morphologische und biologische differenzierung in Fusarium sektion Liseola. Mitt Biol Bundesansi Land-Forstwirtsch Berlin Dahlem. 1976;169:1-117. 
  18. Ma LJ, Geiser DM, Proctor RH, et al. Fusarium pathogenomics. Annu Rev Microbiol. 2013;67:399-416. doi: 10.1146/annurev-micro-092412-155650. 
  19. Mohd Zainudin NAI, Razak AA, Salleh B. Bakanae disease of rice in Malaysia and Indonesia: etiology of the causal agent based on morphological, physiological and pathogenicity characteristics. J Plant Protect Res. 2008;48(4):475-485. doi: 10.2478/v10045-008-0056-z. 
  20. Amatulli MT, Spadaro D, Gullino ML, et al. Molecular identification of Fusarium spp. associated with bakanae disease of rice in Italy and assessment of their pathogenicity. Plant Pathol. 2010;59(5):839-844. doi: 10.1111/j.1365-3059.2010.02319.x. 
  21. Quazi SAJ, Meon S, Jaafar H, et al. Characterization of Fusarium proliferatum through species specific primers and its virulence on rice seeds. Int J Agric Biol. 2013;15:649-656. 
  22. Desjardins AE, Manandhar G, Plattner RD, et al. Occurrence of Fusarium species and mycotoxins in nepalese maize and wheat and the effect of traditional processing methods on mycotoxin levels. J Agric Food Chem. 2000b;48(4):1377-1383. doi: 10.1021/jf991022b. 
  23. Pra MD, Tonti S, Pancaldi D, et al. First report of Fusarium andiyazi associated with rice bakanae in Italy. Plant Dis. 2010;94(8):1070. doi: 10.1094/PDIS-94-8-1070A. 
  24. Egerci Y, Teksur PK, Morca AU. Identification of € Fusarium andiyazi associated with the bakanae disease of rice in Turkey. Curr Microbiol. 2022;79(10):291. doi: 10.1007/s00284-022-02962-x. 
  25. Booth C. The genus Fusarium. Commonwealth mycological institute. England (UK): Kew, Surrey; 1971. p. 221. 
  26. Hsuan HM, Salleh B, Zakaria L. Molecular identification of Fusarium species in Gibberella fujikuroi species complex from rice, sugarcane and maize from peninsular Malaysia. Int J Mol Sci. 2011;12(10):6722-6732. doi: 10.3390/ijms12106722. 
  27. Leslie JF, Anderson LL, Bowden RL, et al. Interand intra-specific genetic variation in Fusarium. Int J Food Mircobiol. 2007;119(1-2):25-32. doi: 10.1016/j.ijfoodmicro.2007.07.059. 
  28. Leslie JF, Summerell BA. The Fusarium laboratory manual. Ames, Iowa: Blackwell Publishing; 2006. 
  29. Amatulli MT, Spadaro D, Gullino ML, et al. Conventional and real-time PCR for the identification of Fusarium fujikuroi and Fusarium proliferatum from diseased rice tissues and seeds. Eur J Plant Pathol. 2012;134(2):401-408. doi: 10.1007/s10658-012-9998-0. 
  30. Edwards SG, O'Callaghan J, Dobson AD. PCR based detection and quantification of mycotoxigenic fungi. Mycol Res. 2002;106(9):1005-1025. doi: 10.1017/S0953756202006354. 
  31. Mancini V, Murolo S, Romanazzi G. Diagnostic methods for detecting fungal pathogens on vegetable seeds. Plant Pathol. 2016;65(5):691-703. doi: 10.1111/ppa.12515. 
  32. Doohan FM, Weston G, Rezanoor HN, et al. Development and use of a reverse transcription-PCR assay to study expression of Tri5 by Fusarium species in vitro and in planta. Appl Environ Microbiol. 1999;65(9)Microb:3850-3854. doi: 10.1128/AEM.65.9.3850-3854.1999. 
  33. Moukhamedov R, Hu X, Nazar R, et al. Use of polymerase chain reaction-amplified ribosomal intergenic sequences for the diagnosis of Verticillium tricorpus. Phytopathology. 1994;84(3):256-259. doi: 10.1094/Phyto-84-256. 
  34. Mulꠙe G, Susca A, Stea G, et al. A species-specific PCR assay based on the calmodulin partial gene for identification of Fusarium verticillioides, F. proliferatum and F. subglutinans. Eur J Plant Pathol. 2004;110(5/6):495-502. doi: 10.1023/B:EJPP.0000032389.84048.71. 
  35. Mulꠙe G, Susca A, Stea G, et al. Specific detection of the toxigenic species Fusarium proliferatum and F. oxysporum from asparagus plants using primers based on calmodulin gene sequences. FEMS Microbiol Lett. 2004;230(2):235-240. doi: 10.1016/S0378-1097(03)00926-1. 
  36. Kulik T, Fordonski G, Pszczolkowska A, et al. Development of PCR assay based on ITS2 rDNA polymorphism for the detection and differentiation of Fusarium sporotrichioides. FEMS Microbiol Lett. 2004;239(1):181-186. doi: 10.1016/j.femsle.2004.08.037. 
  37. Bluhm BH, Flaherty JE, Cousin MA, et al. Multiplex polymerase chain reaction assay for the differential detection of trichothecene-and fumonisin-producing species of Fusarium in cornmeal. J Food Prot. 2002;65(12):1955-1961. doi: 10.4315/0362-028x-65.12.1955. 
  38. Patino B, Mirete S, Teresa Gonzalez-Jaꠙen M, et al. PCR detection assay of fumonisin-producing Fusarium verticillioides strains. J Food Prot. 2004;67(6):1278-1283. doi: 10.4315/0362-028x-67.6.1278. 
  39. Gonzꠙalez-Jaꠙen MT, Mirete S, Patino B, et al. Genetic markers for the analysis of variability and for production of specific diagnostic sequences in fumonisin-producing strains of Fusarium verticillioides. Eur J Plant Pathol. 2004;110(5/6):525-532. doi: 10.1023/B:EJPP.0000032392.20106.81. 
  40. Marꠙin P, Magan N, Vꠙazquez C, et al. Differential effect of environmental conditions on the growth and regulation of the fumonisin biosynthetic gene FUM1 in the maize pathogens and fumonisin producers Fusarium verticillioides and Fusarium proliferatum. FEMS Microbiol Ecol. 2010;73(2):303-311. doi: 10.1111/j.1574-6941.2010.00894.x. 
  41. Chandler EA, Simpson DR, Thomsett MA, et al. Development of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes, and characterisation of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiol Mol Plant Pathol. 2003;62(6):355-367. doi: 10.1016/S0885-5765(03)00092-4. 
  42. Sanna M, Spadaro D, Gullino ML, et al. Optimization of a loop-mediated isothermal amplification assay for on-site detection of Fusarium fujikuroi in rice seed. Agronomy. 2021;11(8):1580. doi: 10.3390/agronomy11081580. 
  43. Bonman JM, Khush GS, Nelson RJ. Breeding rice for resistance to pests. Annu Rev Phytopathol. 1992;30(1):507-528. doi: 10.1146/annurev.py.30.090192.002451. 
  44. Thomas KM. A new paddy disease in madras. Madras Agric J. 1931;19:34-36. 
  45. Surek H, Gumustekin H. 1994) Research activities on controlling rice bakanae and foot rot disease (Fusarium moniliforme) in Turkey In: FAO MedNet Rice: breeding and biotechnology groups: proc. workshops Montpellier: CIHEAM. Cahiers Options Mediterran 8, p. 27-30. 
  46. Mew TW, Gonzales P. A handbook of rice seedborne fungi. Montpellier, France: IRRI; 2002. pp. 6-34. 
  47. Webster RK, Gunnell PS. Compendium of rice diseases. St Paul (MN): APS Press; 1992. pp. 62. 
  48. Nicholson P, Simpson DR, Weston G, et al. Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiol Mol Plant Pathol. 1998;53(1):17-37. doi: 10.1006/pmpp.1998.0170. 
  49. Yabuta T, Hayashi T. Biochemiral studies on bakanae fungus of rice. Part III. Studies on physiological action of gibberellin on the plant. J Agric Cliem Soc Jpn. 1939;15(4):403-413. doi: 10.1271/nogeikagaku1924.15.403. 
  50. Volante A, Tondelli A, Aragona M, et al. Identification of bakanae disease resistance loci in japonica rice through genome wide association study. Rice 2017;10(1):29. doi: 10.1186/s12284-017-0168-z. 
  51. Desjardins AE, Plattner RD, Nelson PE. Production of fumonisin B (inf1) and moniliformin by Gibberella fujikuroi from rice from various geographic areas. Appl Environ Microbiol. 1997;63(5):1838-1842. doi: 10.1128/aem.63.5.1838-1842.1997. 
  52. Gelderblom WC, Jaskiewicz K, Marasas WF, et al. Fumonisins-novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl Environ Microbiol. 1988;54(7):1806-1811. doi: 10.1128/aem.54.7.1806-1811.1988. 
  53. Marasas WF, Kriek NP, Fincham JE, et al. Primary liver cancer and oesophageal basal cell hyperplasia in rats caused by Fusarium moniliforme. Int J Cancer. 1984; Sep 1534(3):383-387. doi: 10.1002/ijc.2910340315. 
  54. Nelson PE, Desjardins AE, Plattner RD. Fumonisins, mycotoxins produced by Fusarium species: biology, chemistry and significance. Annu Rev Phytopathol. 1993;31:233-252. doi: 10.1146/annurev.py.31.090193.001313. 
  55. Wiemann P, Sieber CM, von Bargen KW, et al. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLOS Pathog. 2013; 9(6):e1003475. doi: 10.1371/journal.ppat.1003475. 
  56. Siciliano I, Amaral Carneiro A, Spadaro D, et al. Jasmonic acid, abscisic acid and salicylic acid are involved in the phytoalexin responses of rice to Fusarium fujikuroi, a high gibberellin producer pathogen. J Agric Food Chem. 2015;63(37):8134-8142. doi: 10.1021/acs.jafc.5b03018. 
  57. Tateishi H, Suga H. Species composition, gibberellin production and sensitivity to ipconazole of the Fusarium fujikuroi species complex isolates obtained before and after its launch. J Pestic Sci. 2015;40(3):124-129. doi: 10.1584/jpestics.D14-083. 
  58. Tateishi H, Saishoji T, Suzuki T, et al. Antifungal properties of the seed disinfectant ipconazole and its protection against "bakanae" and other diseases of rice. Jpn J Phytopathol. 1998;64(5):443- 450. doi: 10.3186/jjphytopath.64.443. 
  59. Watanabe Y. The possibility of soil transmission in bakanae disease and the contamination of seed with causal fungus during the hastening process of seed germination. Bull Tokai Kinki Nat Agric Exp St. 1974;27:35-41. 
  60. Anderson L, Webster R. A comparison of assays for Gibberella fujikuroi and their ability to predict resulting bakanae from rice seed sources in California. Phytopathology. 2005;95(S4):6. 
  61. Kanjanasoon P. Studies on the bakanae disease of rice in Thai-land. Doc Agr Thesis Tokyo University; 1965. 
  62. Ou SH. Bakanae disease and foot rot. In: Ou SH, editor. Rice diseases. Japan: Key Surrey, Commonwealth Mycological Institute; 1985. pp 262-272. 
  63. Mathur SB, Manandhar HK. Fungi in seeds recorded at the Danish Government Institute of Seed Pathology for Developing Countries. Copenhagen, Denmark: Danish Government Institute of Seed Pathology for Developing Countries; 2003. 
  64. Ora N, Faruq AN, Islam MT, et al. Detection and identification of seed borne pathogens from some cultivated hybrid rice varieties in Bangladesh. Middle-East J SciRes. 2011;10:482-488. 
  65. Matic S, Gullino ML, Spadaro D. The puzzle of bakanae disease through interactions between Fusarium fujikuroi and rice. Front Biosci. 2017;9(2):333-344. doi: 10.2741/e806. 
  66. Noh T-H, Shim H-K, Choi M-Y, et al. Rice bakanae disease of seed infection and disease occurrence according to rice varieties and seed maturation period. J Agric Life Sci. 2014;45(2):38-43. 
  67. Takeuchi S. Climatic effect on seed infection of rice plant with bakanae disease and disinfection with organic mercury compounds. Proc Kansai Pl Prot Soc. 1972;14:14-19. doi: 10.4165/kapps1958.14.0_14. 
  68. Singh R, Sunder S, Kumar P, et al. Study of bakanae disease of rice in Haryana. Plant Dis Res. 2018;3:15-22. 
  69. Ghazanfar MU, Javed N, Wakil W, et al. Screening of some fine and coarse rice varieties against bakanae disease. J Agric Res. 2013;51:41-49. 
  70. Singh R, Kumar P, Laha GS. Present status of bakanae of rice caused by Fusarium fujikuroi nirenberg. Indian Phytopathol. 2019;72(4):587-597. doi: 10.1007/s42360-019-00125-w. 
  71. Sunani SK, Bashyal BM, Kharayat BS, et al. Identification of rice seed infection routes of Fusarium fujikuroi inciting bakanae disease of rice. J Plant Pathol. 2020;102(1):113-121. doi: 10.1007/s42161-019-00390-8. 
  72. Logrieco A, Bottalico A. Fusarium species of the liseola section associated with stalk and ear rot of maize in Southern Italy, and their ability to produce moniliformin. Trans Br Mycol Soc. 1988;90(2):215-219. doi: 10.1016/S0007-1536(88)80092-5. 
  73. Carter LLA, Leslie JF, Webster RK. Population structure of Fusarium fujikuroi from California rice and water grass. Phytopathology. 2008;98(9):992-998. doi: 10.1094/PHYTO-98-9-0992. 
  74. Choi HW, Lee YH, Hong SK, et al. Identification of Fusarium fujikuroi isolated from barnyard grass and possibility of inoculum source of bakanae disease on rice. Res Plant Dis. 2011;17(1):82-85. doi: 10.5423/RPD.2011.17.1.082. 
  75. Qiu J, Lu Y, He D, et al. Fusarium fujikuroi species complex associated with rice, maize, and soybean from Jiangsu province, China: phylogenetic, pathogenic, and toxigenic analysis. Plant Dis. 2020;104(8):2193-2201. doi: 10.1094/PDIS-09-19-1909-RE. 
  76. Choi HW, Hong SK, Kim JS, et al. First report of Fusarium fujikuroi causing Fusarium wilt on Glycine max in Korea. Plant Dis. 2019;103(9):2469-2469. doi: 10.1094/PDIS-09-18-1602-PDN. 
  77. Kim BR, Choi YJ. Fusarium fujikuroi causing Fusarium wilt of Lactuca serriola in korea. Plant Disease. 2021;105(2):502-502. doi: 10.1094/PDIS-06-20-1370-PDN. 
  78. Perez PM, Alberto RT. Chemical management of anthracnose-twister (Colletotrichum gloeosporioides and Fusarium fujikuroi) disease of onion (Allium cepa). PPQ. 2020;10(1):198-216. doi: 10.5943/ppq/10/1/19. 
  79. Sun W, Lei T, Yuan H, et al. Occurrence of root rot caused by Fusarium fujikuroi and Fusarium proliferatum on peanut in China. Plant Dis. 2023;107(3):940. doi: 10.1094/PDIS-02-22-0438-PDN. 
  80. Zhu Y, Abdelraheem A, Wedegaertner T, et al. First report of Fusarium fujikuroi causing wilt on pima cotton (Gossypium barbadense) seedlings in New Mexico, U.S.A. Plant Dis. 2021;105(1):228. doi: 10.1094/PDIS-03-20-0638-PDN. 
  81. Zheng L, Meng H, Liu YT, et al. Root rot disease of Torreya grandis caused by Fusarium fujikuroi in China. Plant Dis. 2022;107:1635. doi: 10.1094/PDIS-03-22-0710-PDN. 
  82. Li H, Tang W, Liu K, et al. First report of Fusarium fujikuroi causing brown leaf spot on kiwifruit. Plant Dis. 2020;104(5):1560. doi: 10.1094/PDIS-10-19-2112-PDN. 
  83. Leyva-Madrigal KY, Larralde-Corona CP, Apodaca-Sꠙanchez MA, et al. Fusarium species from the Fusarium fujikuroi species complex involved in mixed infections of maize in Northern Sinaloa, Mexico. J Phytopathol. 2015;163(6):486-497. doi: 10.1111/jph.12346. 
  84. Fang D, Chen J, Cheng Y, et al. First report of Fusarium fujikuroi causing bulb rot on Lilium lancifolium in China. Plant Disease. 2021;105(8):2254. doi: 10.1094/PDIS-06-20-1197-PDN. 
  85. Han S, Li Y, Wang M, et al. Stem rot disease of Juglans sigillata caused by Fusarium fujikuroi in China. Plant Dis. 2021;105(7):2019. doi: 10.1094/PDIS-07-20-1579-PDN. 
  86. Shen YN, Xiao D, Hu XX, et al. First report of leaf spot on Lasia spinosa caused by Fusarium fujikuroi in China. Plant Dis. 2020;104(9):2525-2525. doi: 10.1094/PDIS-01-20-0013-PDN. 
  87. Zhao W, Chi YK, Cao S, et al. Occurrence of root rot caused by Fusarium fujikuroi on soybean (Glycine max) in the Central Eastern regions, China. Plant Dis. 2020;104(3):981. doi: 10.1094/PDIS-03-19-0615-PDN. 
  88. Jiang SB, Lin BR, Shen HF, et al. First report of Fusarium fujikuroi causing stem wilt on Canna edulis Ker in China. Plant Dis. 2018;102(6):1177-1177. doi: 10.1094/PDIS-09-17-1479-PDN. 
  89. Duan CX, Wang BB, Sun FF, et al. Occurrence of maize ear rot caused by Fusarium fujikuroi in China. Plant Dis. 2020;104(2):587-587. doi: 10.1094/PDIS-01-19-0154-PDN. 
  90. Ibrahim NF, Mohd MH, Mohamed Nor NMI, et al. Fusarium fujikuroi causing fusariosis of pineapple in peninsular Malaysia. Australas Plant Dis Notes. 2016;11(1):1-6. doi: 10.1007/s13314-016-0206-5. 
  91. Detranaltes C, Jones CR, Cai G. First report of Fusarium fujikuroi causing root rot and seedling elongation of soybean in Indiana. Plant Dis. 2021;105(11):3762. doi: 10.1094/PDIS-03-21-0570-PDN. 
  92. Jiang YR, Yi JM, Zhu TH, et al. Round spot disease of Zanthoxylum armatum caused by Fusarium fujikuroi in China. Plant Dis. 2021;105(10):3303. doi: 10.1094/PDIS-10-20-2315-PDN. 
  93. Pedrozo R, Fenoglio JJ, Little CR. First report of seedborne Fusarium fujikuroi and its potential to cause pre-and post-emergent damping-off on soybean (Glycine max) in the United States. Plant Dis. 2015;99(12):1865-1865. doi: 10.1094/PDIS-03-15-0321-PDN. 
  94. Bolton SL, Brannen PM, Glenn AE. A novel population of Fusarium fujikuroi isolated from southeastern US winegrapes reveals the need to re-evaluate the species fumonisin production. Toxins. 2016;8(9):254. doi: 10.3390/toxins8090254. 
  95. O'Donnell K, Cigelnik E, Nirenberg HI. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia. 1998;90(3):465-493., doi: 10.2307/3761407. 
  96. O'Donnell K, Nirenberg HI, Aoki T, et al. A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience. 2000;41(1):61-78. doi: 10.1007/BF02464387. 
  97. Aoki T, O'Donnell K. Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognized as the group 1 population of F. graminearum. Mycologia. 1999;91(4):597-609., doi: 10.2307/3761245. 
  98. Ward TJ, Bielawski JP, Kistler HC, et al. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proceedings of the National Academy of Sciences, USA 99, p. 9278-83. 2002. doi: 10.1073/pnas.142307199. 
  99. Voigt K, Schleier S, Bruckner B. Genetic variability in Gibberella fujikuroi and some related species of the genus Fusarium based on random amplification of polymorphic DNA (RAPD). Curr Genet. 1995;27(6):528-535. doi: 10.1007/BF00314443. 
  100. Moretti A, Mulꠑe G, Susca A, et al. Toxin profile, fertility and AFLP analysis of Fusarium verticillioides from banana fruits. Eur J Plant Pathol. 2004;110(5/6):601-609. doi: 10.1023/B:EJPP.0000032399.83330.d7. 
  101. Patin O B, Mirete S, Vazquez C, et al. Characterization of Fusarium verticillioides strains by PCR-RFLP analysis of the intergenic spacer region of the rDNA. J Sci Food Agric. 2006;86(3):429-435. doi: 10.1002/jsfa.2353. 
  102. White TJ, Bruns TD, Lee SB, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York (NY): Academic Press; 1990. pp 315-322. 
  103. Geiser DM, del Mar Jimꠙenez-Gasco M, Kang S, et al. FUSARIUM-ID v. 1.0: a DNA sequence database for identifying Fusarium. Eur J Plant Pathol. 2004;110(5/6):473-479., doi: 10.1023/B:EJPP.0000032386.75915.a0. 
  104. Stiller JW, Hall BD. The origin of red algae: implications for plastid evolution. Proc Natl Acad Sci U S A. 1997;94:4520-4525. doi: 10.1073/pnas.94.9.4520. 
  105. Liu YL, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol. 1999;16(12):1799-1808. doi: 10.1093/oxfordjournals.molbev.a026092. 
  106. Rahjoo V, Zad J, Javan-Nikkhah M, et al. Morphological and molecular identification of Fusarium isolated from maize ears in Iran. J. Plant Pathol. 2008;90:463-468. 
  107. Kvas M, Marasas WFO, Wingfield BD, et al. Diversity and evolution of Fusarium species in the Gibberella fujikuroi complex. Fungal Divers. 2009;34:1-21. 
  108. Velarde FS, Valdez RN, Zamora GF, et al. Molecular identification of Fusarium spp. isolated maize in Sinaloa, Mexico. Rev Mexicana Cienc Agric. 2018;9(8):1675-1689.  https://doi.org/10.29312/remexca.v9i8.756
  109. Ma L, Ji Z, Bao J, et al. Responses of rice genotypes carrying different dwarf genes to Fusarium moniliforme and gibberellic acid. Plant Prod Sci. 2008;11(1):134-138. doi: 10.1626/pps.11.134. 
  110. Kang MR, Kim JH, Lee SH, et al. Detection of Fusarium verticillioides contaminated in corn using a new species-specific primer. Res Plant Dis. 2011;17(3):369-375. doi: 10.5423/RPD.2011.17.3.369. 
  111. Hwang IS, Kang W-R, Hwang D-J, et al. Evaluation of bakanae disease progression caused by Fusarium fujikuroi in Oryza sativa L. J Microbiol. 2013;51(6):858-865. doi: 10.1007/s12275-013-3472-3. 
  112. Choi JH, Lee S, Nah JY, et al. Species composition of and Fumonisin production by the Fusarium fujikuroi species complex isolated from Korean cereals. Int J Food Microbiol. 2018;267:62-69. doi: 10.1016/j.ijfoodmicro.2017.12.006. 
  113. Kim JH, Kang MR, Kim HK, et al. Population structure of the Gibberella fujikuroi species complex associated with rice and corn in Korea. Plant Pathol J. 2012;28(4):357-363. doi: 10.5423/PPJ.OA.09.2012.0134. 
  114. Jeon HS, Kim JE, Yang JW, et al. Application of direct PCR for phylogenetic analysis of Fusarium fujikuroi species complex isolated from rice seeds. Front Plant Sci. 2022;13:1093688. doi: 10.3389/fpls.2022.1093688. 
  115. Lin HA, Chen SY, Chang FY, et al. Genome-wide association study of rice genes and loci conferring resistance to Magnaporthe oryzae isolates from Taiwan. Bot Stud. 2018;59(1):32. doi: 10.1186/s40529-018-0248-4. 
  116. Choi H-W, Hong SK, Lee YK, et al. Taxonomy of Fusarium fujikuroi species complex associated with bakanae on rice in Korea. Australas Plant Pathol. 2018;47(1):23-34. doi: 10.1007/s13313-017-0536-6. 
  117. Carneiro GA, Matꠙic S, Ortu G, et al. Development and validation of a TaqMan Real-Time PCR assay for the specific detection and quantification of Fusarium fujikuroi in rice plants and seeds. Phytopathology. 2017;107(7):885-892. doi: 10.1094/PHYTO-10-16-0371-R. 
  118. Steenkamp ET, Wingfield BD, Coutinho TA, et al. PCR-based identification of MAT-1 and MAT-2 in the Gibberella fujikuroi species complex. Appl Environ Microbiol. 2000;66(10):4378- 4382. doi: 10.1128/AEM.66.10.4378-4382.2000. 
  119. Choi HW, Hong SK, Kim WG, et al. New specific primer useful for detecting Fusarium fujikuroi in rice comprises specific base pair sequence. Patent No. KR2012045917-A. 2012. 
  120. Ahn IP, Bae SC, Park SR, et al. FfPNG1 gene-specific primer and method for detection of bakanae disease using the same. Patent No. KR20150057 692A. 2015. 
  121. Yoon SH, Kim HK, Kim D. Two sets Specific primers for detection of pathotype of Fusarium fujikuroi. Patent No. KR101836405B1. 2018. 
  122. Pramunadipta S, Widiastuti A, Wibowo A, et al. Development of PCR-RFLP technique for identify several members of Fusarium incarnatum-equiseti species complex and Fusarium fujikuroi species complex. Plant Pathol J. 2022;38(3):254-260. doi: 10.5423/PPJ.NT.12.2021.0184. 
  123. Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):e63. doi: 10.1093/nar/28.12.e63. 
  124. Franco Ortega S, Tomlinson J, Hodgetts J, et al. Development of loop-mediated isothermal amplification assays for the detection of seedborne fungal pathogens Fusarium fujikuroi and Magnaporthe oryzae in rice seed. Plant Dis. 2018;102(8):1549-1558. doi: 10.1094/PDIS-08-17-1307-RE. 
  125. Rong Z, Yuan Y, Ye W, et al. Rapid diagnosis of rice bakanae caused by Fusarium fujikuroi and F. proliferatum using loop-mediated isothermal amplification assays. J Phytopathol. 2018;166(4):283-290. doi: 10.1111/jph.12685. 
  126. Jiang H, Wu N, Jin S, et al. Identification of rice seed-derived Fusarium spp. and development of LAMP assay against Fusarium fujikuroi. Pathogens. 2021;10(1):1. doi: 10.3390/pathogens10010001. 
  127. Hossain MS, Ayub Ali M, Mollah MIU, et al. Evaluation of fungicides for the control of bakanae disease of rice caused by Fusarium moniliforme (Sheldon). Bangladesh Rice J. 2015;19(1):49-55. doi: 10.3329/brj.v19i1.25220. 
  128. Park HG, Shin HR, Lee Y, et al. Influence of water temperature, soaking period, and chemical dosage on bakanae disease of rice (Gibberella fujikuroi) in seed disinfection. Korean J Pestic Sci. 2003;7(3):216-222. 
  129. Hwang DY, Kim DS, Kim SY, et al. A study on seed disinfection method for the control of bakanae. Korean J Crop Sci. 2005;50(2):126-127. 
  130. Park WS, Choi HW, Han SS, et al. Control of bakanae disease of rice by seed soaking into the mixed solution of procholraz and fludioxnil. Res Plant Dis. 2009;15(2):94-100. doi: 10.5423/RPD.2009.15.2.094. 
  131. Chun SC, Schneider RW, Cohn MA. Sodium hypochlorite: effect of solution pH on rice seed disinfestation and its direct effect on seedling growth. Plant Dis. 1997;81(7):821-824. doi: 10.1094/PDIS.1997.81.7.821. 
  132. Shin MU, Kang HJ, Lee YH, et al. Detection for the resistance of Fusarium spp. isolated from rice seeds to prochloraz and cross-resistance to other fungicides inhibiting sterol biosynthesis. Korean J Pestic Sci. 2008;12:277-282. 
  133. Shin JH, Han JH, Lee JK, et al. Characterization of the maize stalk rot pathogens Fusarium subglutinans and F. temperatum and the effect of fungicides on their mycelial growth and colony formation. Plant Pathol J. 2014;30(4):397-406. doi: 10.5423/PPJ.OA.08.2014.0078. 
  134. Lee J, Chang IY, Kim H, et al. Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl Environ Microbiol. 2009;75(10):3289-3295. doi: 10.1128/AEM.02287-08. 
  135. Rosales AM, Mew TW. Suppression of Fusarium fujikuroi in rice by rice-associated antagonistic bacteria. Plant Dis. 1997;81(1):49-52. doi: 10.1094/PDIS.1997.81.1.49. 
  136. Kazempour MN, Elahinia SA. Biological control of Fusarium fujikuroi, the causal agent of bakanae disease by rice associated antagonistic bacteria. Bulgarian J Agric Sci. 2007;13:408. 
  137. Hossain MT, Khan A, Chung EJ, et al. Biological control of rice bakanae by an endophytic Bacillus oryzicola YC7007. Plant Pathol J. 2016;32(3):228-241. doi: 10.5423/PPJ.OA.10.2015.0218. 
  138. Yang CD, Guo LB, Li XM, et al. Analysis of QTLs for resistance to rice bakanae disease. Chin J Rice Sci. 2006;6:657-659. 
  139. Hur YJ, Lee SB, Kim TH, et al. Mapping of qBK1, a major QTL for bakanae disease resistance in rice. Mol Breed. 2015;35(2):78. doi: 10.1007/s11032-015-0281-x. 
  140. Hur YJ, Lee SB, Shin DJ, et al. Screening of rice germplasm for bakanae disease resistance in rice. Korean J Breed Sci. 2016;48(1):22-28. doi: 10.9787/KJBS.2016.48.1.022. 
  141. Fiyaz RA, Gopala Krishnan S, Rajashekara H, et al. Development of high throughput screening protocol and identification of novel sources of resistance against bakanae disease in rice (Oryza sativa L.). Indian J Genet Plant Breed. 2014;74(4):414-422. doi: 10.5958/0975-6906.2014.00864.5. 
  142. Fiyaz RA, Yadav AK, Krishnan SG, et al. Mapping quantitative trait loci responsible for resistance to bakanae disease in rice. Rice. 2016;9(1):45. doi: 10.1186/s12284-016-0117-2. 
  143. Choi Y, Jung B, Li T, et al. Identification of genes related to fungicide resistance in Fusarium fujikuroi. Mycobiology. 2017;45(2):101-104. doi: 10.5941/MYCO.2017.45.2.101. 
  144. Lee SB, Hur YJ, Cho JH, et al. Molecular mapping of qBK1 WD, a major QTL for bakanae disease resistance in rice. Rice. 2018;11(1):3. doi: 10.1186/s12284-017-0197-7. 
  145. Kang D-Y, Cheon K-S, Oh J, et al. Rice genome resequencing reveals a major quantitative trait locus for resistance to bakanae disease caused by Fusarium fujikuroi. Int J Mol Sci. 2019;20(10):2598. doi: 10.3390/ijms20102598. 
  146. Jo S, Lee S-B, Hur Y-J, et al. Development of 'MY299BK', a cultivar resistant to bakanae disease harboring qBK1 gene derived from a tong-il type rice 'shingwang'. Korean J Breed Sci. 2020;52(2):172-178. doi: 10.9787/KJBS.2020.52.2.172. 
  147. Lee S-B, Lee J-Y, Kang J-W, et al. A novel locus for bakanae disease resistance, qBK4T, identified in rice. Agronomy. 2022;12(10):2567. doi: 10.3390/agronomy12102567.