DOI QR코드

DOI QR Code

Development and Optimization of Culture Medium for the Production of Glabridin by Aspergillus eucalypticola: An Endophytic Fungus Isolated from Glycyrrhiza glabra L. (Fabaceae)

  • Parisa Bahadori Ganjabadi (Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University) ;
  • Mohsen Farzaneh (Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University) ;
  • Mohammad Hossein Mirjalili (Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University)
  • 투고 : 2023.02.06
  • 심사 : 2023.06.09
  • 발행 : 2023.08.31

초록

Glabridin is a well-known active isoflavone found in the root of licorice (Glycyrrhiza glabra L.) that possess a wide range of biological activity. Plant cells, hairy roots, and fungal endophytes cultures are the most important alternative methods for plant resources conservation and sustainable production of natural compounds, which has received much attention in recent decades. In the present study, an efficient culture condition was optimized for the biomass accumulation and glabridin production from fungal endophyte Aspergillus eucalypticola SBU-11AE isolated from licorice root. Type of culture medium, range of pH, and licorice root extract (as an elicitor) were tested. The results showed that the highest and lowest biomass production was observed on PCB medium (6.43 ± 0.32 g/l) and peptone malt (5.85 + 0.11 g/l), respectively. The medium culture PCB was produced the highest level of glabridin (7.26 ± 0.44 mg/l), while the lowest level (4.47 ± 0.02 mg/l) was obtained from the medium peptone malt. The highest biomass (8.51 ± 0.43 g/l) and glabridin (8.30 ± 0.51 mg/l) production were observed from the PCB medium adjusted with pH = 6, while the lowest value of both traits was obtained from the same medium with pH = 7. The highest production of total glabridin (10.85 ± 0.84 mg/l) was also obtained from the culture medium treated with 100 mg/l of the plant root extract. This information can be interestingly used for the commercialization of glabridin production for further industrial applications.

키워드

과제정보

The authors express their appreciation to the Research Council of Shahid Beheshti University, Tehran, Iran for their financial support. We also wish to thank Mr. Ali Esmaeili and Mr. Hamid Ahadi for their kind help in data collection and HPLC analysis, respectively. This work is a part of Parisa Bahadori Ganjabadi M.Sc.'s thesis.

참고문헌

  1. Mustafa G, Arif R, Atta A, et al. Bioactive compounds from medicinal plants and their importance in drug discovery in Pakistan. Matrix Sci. Pharma. 2017;1(1):17-26. doi: 10.26480/msp.01.2017.17.26. 
  2. Li Y, Kong D, Fu Y, et al. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem. 2020;148:80-89. doi: 10.1016/j.plaphy.2020.01.006. 
  3. Sholikhah EN. Indonesian medicinal plants as sources of secondary metabolites for pharmaceutical industry. JMedScie. 2016;48(04):226-239. doi: 10.19106/JMedSci004804201606. 
  4. Yue W, Ming Q-L, Lin B, et al. Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit Rev Biotechnol. 2016;36(2):215-232. doi: 10.3109/07388551.2014.923986. 
  5. Ur Rehman F, Kalsoom M, Adnan M, et al. Importance of medicinal plants in human and plant pathology: a review. Int. J. Phar. & Biomedi. Rese. 2021;8(2):1-11. doi: 10.18782/2394-3726.1110. 
  6. Tlili H, Hanen N, Ben Arfa A, et al. Biochemical profile and in vitro biological activities of extracts from seven folk medicinal plants growing wild in Southern Tunisia. PLoS One. 2019;14(9):e0213049. doi: 10.1371/journal.pone.0213049. 
  7. Zheng R, Li S, Zhang X, et al. Biological activities of some new secondary metabolites isolated from endophytic fungi: a review study. IJMS. 2021;22(2):959. doi: 10.3390/ijms22020959. 
  8. Zhang HW, Song YC, Tan RX. Biology and chemistry of endophytes. Nat Prod Rep. 2006;23(5):753-771. doi: 10.1039/b609472b. 
  9. Palanichamy P, Krishnamoorthy G, Kannan S, et al. Bioactive potential of secondary metabolites derived from medicinal plant endophytes. Egypt.J. Basic Appl. Sci. 2018;5(4):303-312. doi: 10.1016/j.ejbas.2018.07.002. 
  10. Fadiji AE, Babalola OO. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front Bioeng Biotechnol. 2020;8:467. doi: 10.3389/fbioe.2020.00467. 
  11. Naik PM, Al-Khayri JM. Abiotic and biotic elicitors-role in secondary metabolites production through in vitro culture of medicinal plants. In: Shanker AK, Shanker C, editors. Abiotic and biotic stress in plants, recent advances future perspectives. London: IntechOpen; 2016. p. 247-277. 
  12. Li Y-C, Tao W-Y, Cheng L. Paclitaxel production using co-culture of Taxus suspension cells and paclitaxel-producing endophytic fungi in a co-bioreactor. Appl Microbiol Biotechnol. 2009;83(2):233-239. doi: 10.1007/s00253-009-1856-4. 
  13. Salehi M, Moieni A, Safaie N, et al. New synergistic co-culture of Corylus avellana cells and Epicoccum nigrum for paclitaxel production. J Ind Microbiol Biotechnol. 2019;46(5):613-623. doi: 10.1007/s10295-019-02148-8. 
  14. Zhao J, Zhang Y, Wang L, et al. Bioactive secondary metabolites from Nigrospora sp. LLGLM003, an endophytic fungus of the medicinal plant Moringa oleifera lam. World J Microbiol Biotechnol. 2012;28(5):2107-2112. doi: 10.1007/s11274-012-1015-4. 
  15. Toghueo RMK, Kemgne EAM, Sahal D, et al. Specialized antiplasmodial secondary metabolites from Aspergillus niger 58, an endophytic fungus from Terminalia catappa. J Ethnopharmacol. 2021;269:113672. doi: 10.1016/j.jep.2020.113672. 
  16. Gill H, Vasundhara M. Isolation of taxol producing endophytic fungus Alternaria brassicicola from non-Taxus medicinal plant Terminalia arjuna. World J. Microbiol. Biotechnol. 2019;35(5):1-8.  https://doi.org/10.1007/s11274-018-2566-9
  17. Teimoori-Boghsani Y, Ganjeali A, Cernava T, et al. Endophytic fungi of native Salvia abrotanoides plants reveal high taxonomic diversity and unique profiles of secondary metabolites. Front Microbiol. 2019;10:3013. doi: 10.3389/fmicb.2019.03013. 
  18. Dang H, Zhang T, Li G, et al. Root-associated endophytic bacterial community composition and structure of three medicinal licorices and their changes with the growing year. BMC Microbiol. 2020;20(1):1-18. doi: 10.1186/s12866-020-01977-3. 
  19. Liu M, Jing H, Zhang J, et al. Optimization of mycelia selenium polysaccharide extraction from Agrocybe cylindracea SL-02 and assessment of their antioxidant and anti-ageing activities. PLoS One. 2016;11(8):e0160799. doi: 10.1371/journal.pone.0160799. 
  20. Shah A, Rather M, Hassan Q, et al. Discovery of anti-microbial and anti-tubercular molecules from Fusarium solani: an endophyte of Glycyrrhiza glabra. J Appl Microbiol. 2017;122(5):1168-1176. doi: 10.1111/jam.13410. 
  21. Pradeep FS, Pradeep B. Optimization of pigment and biomass production from Fusarium moniliforme under submerged fermentation conditions. Culture. 2013;10(11):526-535. 
  22. Pastorino G, Cornara L, Soares S, et al. Liquorice (Glycyrrhiza glabra): a phytochemical and pharmacological review. Phytother Res. 2018;32(12):2323-2339. doi: 10.1002/ptr.6178. 
  23. Esmaeili H, Karami A, Hadian J, et al. Variation in the phytochemical contents and antioxidant activity of Glycyrrhiza glabra populations collected in Iran. Ind. Crops Prod. 2019;137:248-259. doi: 10.1016/j.indcrop.2019.05.034. 
  24. Thakur A, Raj P. Pharmacological perspective of Glycyrrhiza glabra linn: a mini-review. J Anal Pharm Res. 2017;5(5):00156. 
  25. Simmler C, Pauli GF, Chen S-N. Phytochemistry and biological properties of glabridin. Fitoterapia. 2013;90:160-184. doi: 10.1016/j.fitote.2013.07.003. 
  26. Mukhopadhyay M, Panja P. A novel process for extraction of natural sweetener from licorice (Glycyrrhiza glabra) roots. Sep. Purif. Technol. 2008;63(3):539-545. doi: 10.1016/j.seppur.2008.06.013. 
  27. Wahab S, Annadurai S, Abullais SS, et al. Glycyrrhiza glabra (Licorice): a comprehensive review on its phytochemistry, biological activities, clinical evidence and toxicology. Plants. 2021;10(12):2751. doi: 10.3390/plants10122751. 
  28. Jiang F, Li Y, Mu J, et al. Glabridin inhibits cancer stem cell-like properties of human breast cancer cells: an epigenetic regulation of miR-148a/SMAd2 signaling. Mol Carcinog. 2016;55(5):929-940. doi: 10.1002/mc.22333. 
  29. Li C-X, Li T-h, Zhu M, et al. Pharmacological properties of glabridin (a flavonoid extracted from licorice): a comprehensive review. JFF. 2021;85:104638. doi: 10.1016/j.jff.2021.104638. 
  30. Saeedi M, Morteza-Semnani K, Ghoreishi MR. The treatment of atopic dermatitis with licorice gel. J Dermatolog Treat. 2003;14(3):153-157. doi: 10.1080/09546630310014369. 
  31. Chen S-L, Yu H, Luo H-M, et al. Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chin Med. 2016;11(1):1-10. doi: 10.1186/s13020-016-0108-7. 
  32. Yang R, Wang L, Liu Y. Research progress on tissue culture of Glycyrrhiza radix et rhizoma. Chin. Tradit. Herb. Drugs. 2014;45(12):1796-1802. 
  33. Wongwicha W, Tanaka H, Shoyama Y, et al. Production of glycyrrhizin in callus cultures of licorice. Z Naturforsch C J Biosci. 2008;63(5-6):413-417. doi: 10.1515/znc-2008-5-617. 
  34. Perez MF, Contreras L, Garnica NM, et al. Native killer yeasts as biocontrol agents of postharvest fungal diseases in lemons. PLoS One. 2016;11(10):e0165590. doi: 10.1371/journal.pone.0165590. 
  35. Kushwaha RK, Singh S, Pandey SS, et al. Innate endophytic fungus, Aspergillus terreus as biotic elicitor of withanolide a in root cell suspension cultures of Withania somnifera. Mol Biol Rep. 2019; 46(2):1895-1908. doi: 10.1007/s11033-019-04641-w. 
  36. Zhang C, Shen H, Zhang X, et al. Combined mutagenesis of Rhodosporidium toruloides for improved production of carotenoids and lipids. Biotechnol Lett. 2016;38(10):1733-1738. doi: 10.1007/s10529-016-2148-6. 
  37. Ma K, Kou J, Rahman MKU, et al. Palmitic acid mediated change of rhizosphere and alleviation of Fusarium wilt disease in watermelon. Saudi J Biol Sci. 2021;28(6):3616-3623. doi: 10.1016/j.sjbs.2021.03.040. 
  38. Zhao H, Huang L, Xiao C, et al. Influence of culture media and environmental factors on mycelial growth and conidial production of Diplocarpon mali. Lett Appl Microbiol. 2010;50(6):639-644. doi: 10.1111/j.1472-765X.2010.02847.x. 
  39. El-Sheekh M, Mahmoud Y-G, Abo-Shady A, et al. Efficacy of Rhodotorula glutinis and Spirulina platensis carotenoids in immunopotentiation of mice infected with Candida albicans SC5314 and Pseudomonas aeruginosa 35. Folia Microbiol (Praha). 2010;55(1):61-67. doi: 10.1007/s12223-010-0010-0. 
  40. Abubakar A, Suberu HA, Bello IM, et al. Effect of pH on mycelial growth and sporulation of Aspergillus parasiticus. J Plant Sci. 2013;1(4):64-67. 
  41. Kalyoncu F, Oskay M, Saglam H, et al. Antimicrobial and antioxidant activities of mycelia of 10 wild mushroom species. J Med Food. 2010;13(2):415-419.  https://doi.org/10.1089/jmf.2009.0090
  42. El-Sayed AS, Khalaf SA, Azez HA, et al. Production, bioprocess optimization and anticancer activity of camptothecin from Aspergillus terreus and Aspergillus flavus, endophytes of Ficus elastica. Process Biochem. 2021;107:59-73. doi: 10.1016/j.procbio.2021.05.007. 
  43. Leite LG, Alves SB, Batista Filho A, et al. Effect of salts, vitamins, sugars and nitrogen sources on the growth of three genera of Entomophthorales: Batkoa, Furia, and Neozygites. Mycol Res. 2003;107(7):872-878.doi: 10.1017/s0953756203007974. 
  44. Hirasuna TJ, Pestchanker LJ, Srinivasan V, et al. Taxol production in suspension cultures of Taxus baccata. Plant Cell Tiss Organ Cult. 1996;44(2):95-102. doi: 10.1007/BF00048185. 
  45. Luby CH, Maeda HA, Goldman IL. Genetic and phenological variation of tocochromanol (vitamin E) content in wild (Daucus carota L. var. carota) and domesticated carrot (D. carota L. var. sativa). Hort. Res. 2014;1(1):1-6.  https://doi.org/10.1038/hortres.2014.1
  46. Yang F-C, Liau C-B. Effects of cultivating conditions on the mycelial growth of Ganoderma lucidum in submerged flask cultures. Bioprocess Eng. 1998;19(3):233-236. doi: 10.1007/s004490050512. 
  47. Arora P, Wani ZA, Ahmad T, et al. Community structure, spatial distribution, diversity and functional characterization of culturable endophytic fungi associated with Glycyrrhiza glabra L. Fungal Biol. 2019;123(5):373-383. doi: 10.1016/j.funbio.2019.02.003. 
  48. Yuan J, Zhou J-Y, Li X, et al. The primary mechanism of endophytic fungus Gilmaniella sp. AL12 promotion of plant growth and sesquiterpenoid accumulation in Atractylodes lancea. Plant Cell Tiss Organ Cult. 2016;125(3):571-584. doi: 10.1007/s11240-016-0971-z. 
  49. Liu X, Zhou Z-Y, Cui J-L, et al. Biotransformation ability of endophytic fungi: from species evolution to industrial applications. Appl Microbiol Biotechnol. 2021;105(19):7095-7113. doi: 10.1007/s00253-021-11554-x. 
  50. Glenn AE, Davis CB, Gao M, et al. Two horizontally transferred xenobiotic resistance gene clusters associated with detoxification of benzoxazolinones by Fusarium species. PLoS One. 2016;11(1):e0147486. doi: 10.1371/journal.pone.0147486. 
  51. Bilal S, Shahzad R, Khan AL, et al. Endophytic microbial consortia of phytohormones-producing fungus Paecilomyces formosus LHL10 and bacteria Sphingomonas sp. LK11 to Glycine max L. regulates physio-hormonal changes to attenuate aluminum and zinc stresses. Front Plant Sci. 2018;9:1273. doi: 10.3389/fpls.2018.01273. 
  52. Ding C-h, Wang Q-B, Guo S, et al. The improvement of bioactive secondary metabolites accumulation in Rumex gmelini turcz through co-culture with endophytic fungi. Braz J Microbiol. 2018;49(2):362-369. doi: 10.1016/j.bjm.2017.04.013.